
1

CDFG Tools (Ver 1.0)

Jinhwan Jeon

Design Automation Lab.

Seoul National University

June 10, 1999

1. Introduction.

 CDFG stands for control and data flow graph. It is generally used as an input format to a high level

synthesis system. Our CDFG tools include CDFG generator, CDFG to C(VHDL) converter, and C++

source codes for parsing a CDFG file. The CDFG generator transforms intermediate format (IF) file into

textual control data flow graph (CDFG) file. The intermediate format file is generated by compiling an

input VHDL code using VHDL analyzer(van). Therefore, you must compile the VHDL code using ‘van’

before running CDFG generator. The CDFG to C(VHDL) converter generates C(VHLD) file from a

CDFG file. Finally, the C++ source codes for parsing a CDFG file support you to develop your own

applications using our CDFG file format. We developed the parser based on the OOP(Object Oriented

Programming) concept for the ease of extendibility and modularity of programming.

2

2. CDFG Generator

 The CDFG generator (cdfggen) transforms intermediate format (IF) file into textual control data flow

graph (CDFG) file. The intermediate format file is generated by compiling an input VHDL code using

VHDL analyzer (van). Therefore, you must compile the VHDL code using ‘van’ before running CDFG

generator.

2.1 Usage

The usage of cdfggen is as follows.

Usage: cdfggen [options] top_configuration_name

Options:

 -v : enable verbose mode

 -P : expand all the packages used in the source VHDL code into CDFG file

 -o output_file : set output file name

 -C format : set output format (0, 1, 2). ‘2’ is the default format for which we provide C++ parser.

 -D: enable debug mode

 -nocycle : In some examples(synchronous circuit), there may exist cycle in the graph. If this option

is on, all the cycles are removed in the graph. (Generally not used.)

 -noconv : If the same entity is instantiated multiple times, we convert name such that each

instance has the unique name. If this option is on, we do not convert name. (Generally not

used.)

 -nosplitprocess : In synchronous circuit, we need to split a process into multiple parts in order to

represent correct dependencies. If this option is on, we don’t split process for that case.

(Generally not used.)

 -i indent_size : set the size of indent.

 -f vhdlfile : Generally you should compile vhdlfile before running cdfggen. If this option is on

cdfggen executes van before generating CDFG. It has the same effect as executing van and

cdfggen in the following sequence.

 van vhdlfile.vhd; cdfggen cfg_vhdfile

 -s clock_signal : set clock signal name for synchronous circuit.

Though cdfggen reads IF file generated by van. We don’t need to remember all the names of IF files to

make a CDFG file. We have only to give the top configuration name of the design to cdfggen. Therefore,

the input VHDL file should be described in complete form containing configuration construct. Figure 1

3

shows an example VHDL code which describes 11th order FIR filter.

--
-- Example VHDL file describing an 11 th order FIR filter
--
entity fir11 is
port (

inp0: in real;
outp: out real);

end fir11;

architecture fir11_beh of fir11 is
begin

process (inp0)
variable inp1, inp2, inp3, inp4, inp5, inp6, inp7, inp8, inp9, inp10: real;
variable acc0, acc1, acc2, acc3, acc4,acc5, acc6, acc7, acc8, acc9: real;

begin
acc0 := inp10 * (-0.001953125);
acc1 := inp9 * (0.003906250) + acc0;
acc2 := inp8 * (-0.007812500) + acc1;
acc3 := inp7 * (0.019531250) + acc2;
acc4 := inp6 * (-0.066406250) + acc3;
acc5 := inp5 * (0.750000000) + acc4;
acc6 := inp4 * (-0.066406250) + acc5;
acc7 := inp3 * (0.019531250)+ acc6;
acc8 := inp2 * (-0.007812500) + acc7;
acc9 := inp1 * (0.003906250) + acc8;
outp <= inp0 * (-0.001953125) + acc9;

inp10 := inp9;
inp9 := inp8;
inp8 := inp7;
inp7 := inp6;
inp6 := inp5;
inp5 := inp4;
inp4 := inp3;
inp3 := inp2;
inp2 := inp1;
inp1 := inp0;

end process;
end fir11_beh;

configuration cfg_fir11 of fir11 is
for fir11_beh
end for;

end cfg_fir11;

Figure 1. Example VHDL code for 11th order FIR filter.

 The example is described in complete form containing entity, architecture body and configuration

constructs. To generate a CDFG file named ‘fir11.cdfg’ we have only to run cdfggen as follows.

cdfggen –o fir11.cdfg cfg_fir11

4

Note that we don’t give the VHDL file name but the top configuration name to cdfggen. You should

compile the VHDL file before running cdfggen by running van as follows.

van fir11.vhd

Figure 2 shows the CDFG file generated by cdfggen for the FIR filter example.

**
* CDFG for FIR11 generated by 'cdfggen'
*
* Date: Mon Jun 7 15:23:43 1999
* User: jeonjinh
**
edge 0 1 INP0 REAL 1 32
edge 1 -1 OUTP REAL 1 32
node 0 source - - -
node 1 FIR11 - - -
 length_type INP0 REAL 32 in - to -
 length_type OUTP REAL 32 out - to -
 subgraph 1
 edge 0 1 INP0 REAL 1 32
 edge 0 1 INP0 event 1 1
 edge 1 -1 OUTP REAL 1 32
 node 1 mod_1 - - - (PROCESS)
 length_type INP1 REAL 32 - - to -
 length_type INP2 REAL 32 - - to -
 length_type INP3 REAL 32 - - to -
 length_type INP4 REAL 32 - - to -
 length_type INP5 REAL 32 - - to -
 length_type INP6 REAL 32 - - to -
 length_type INP7 REAL 32 - - to -
 length_type INP8 REAL 32 - - to -
 length_type INP9 REAL 32 - - to -
 length_type INP10 REAL 32 - - to -
 length_type ACC0 REAL 32 - - to -
 length_type ACC1 REAL 32 - - to -
 length_type ACC2 REAL 32 - - to -
 length_type ACC3 REAL 32 - - to -
 length_type ACC4 REAL 32 - - to -
 length_type ACC5 REAL 32 - - to -
 length_type ACC6 REAL 32 - - to -
 length_type ACC7 REAL 32 - - to -
 length_type ACC8 REAL 32 - - to -
 length_type ACC9 REAL 32 - - to -
 length_type _tmp_0_4ACC1 REAL 32 - - to -
 length_type _tmp_0_6ACC2 REAL 32 - - to -
 length_type _tmp_0_8ACC3 REAL 32 - - to -
 length_type _tmp_0_10ACC4 REAL 32 - - to -
 length_type _tmp_0_12ACC5 REAL 32 - - to -
 length_type _tmp_0_14ACC6 REAL 32 - - to -
 length_type _tmp_0_16ACC7 REAL 32 - - to -
 length_type _tmp_0_18ACC8 REAL 32 - - to -
 length_type _tmp_0_20ACC9 REAL 32 - - to -
 length_type _tmp_0_22OUTP REAL 32 - - to -
 subgraph 1
 edge 0 1 INP10 REAL 1 32

5

 edge 0 1 -0.001953125 REAL 1 32
 edge 0 2 INP9 REAL 1 32
 edge 0 2 0.003906250 REAL 1 32
 edge 2 12 _tmp_0_4ACC1 REAL 1 32
 edge 1 12 ACC0 REAL 1 32
 edge 0 3 INP8 REAL 1 32
 edge 0 3 -0.007812500 REAL 1 32
 edge 3 13 _tmp_0_6ACC2 REAL 1 32
 edge 12 13 ACC1 REAL 1 32
 edge 0 4 INP7 REAL 1 32
 edge 0 4 0.019531250 REAL 1 32
 edge 4 14 _tmp_0_8ACC3 REAL 1 32
 edge 13 14 ACC2 REAL 1 32
 edge 0 5 INP6 REAL 1 32
 edge 0 5 -0.066406250 REAL 1 32
 edge 5 15 _tmp_0_10ACC4 REAL 1 32
 edge 14 15 ACC3 REAL 1 32
 edge 0 6 INP5 REAL 1 32
 edge 0 6 0.750000000 REAL 1 32
 edge 6 16 _tmp_0_12ACC5 REAL 1 32
 edge 15 16 ACC4 REAL 1 32
 edge 0 7 INP4 REAL 1 32
 edge 0 7 -0.066406250 REAL 1 32
 edge 7 17 _tmp_0_14ACC6 REAL 1 32
 edge 16 17 ACC5 REAL 1 32
 edge 0 8 INP3 REAL 1 32
 edge 0 8 0.019531250 REAL 1 32
 edge 8 18 _tmp_0_16ACC7 REAL 1 32
 edge 17 18 ACC6 REAL 1 32
 edge 0 9 INP2 REAL 1 32
 edge 0 9 -0.007812500 REAL 1 32
 edge 9 19 _tmp_0_18ACC8 REAL 1 32
 edge 18 19 ACC7 REAL 1 32
 edge 0 10 INP1 REAL 1 32
 edge 0 10 0.003906250 REAL 1 32
 edge 10 20 _tmp_0_20ACC9 REAL 1 32
 edge 19 20 ACC8 REAL 1 32
 edge 0 11 INP0 REAL 1 32
 edge 0 11 -0.001953125 REAL 1 32
 edge 11 21 _tmp_0_22OUTP REAL 1 32
 edge 20 21 ACC9 REAL 1 32
 edge 0 22 INP9 REAL 1 32
 edge 1 22 depend bool 1 1 (anti)
 edge 0 23 INP8 REAL 1 32
 edge 22 23 depend bool 1 1 (anti)
 edge 2 23 depend bool 1 1 (anti)
 edge 0 24 INP7 REAL 1 32
 edge 23 24 depend bool 1 1 (anti)
 edge 3 24 depend bool 1 1 (anti)
 edge 0 25 INP6 REAL 1 32
 edge 24 25 depend bool 1 1 (anti)
 edge 4 25 depend bool 1 1 (anti)
 edge 0 26 INP5 REAL 1 32
 edge 25 26 depend bool 1 1 (anti)
 edge 5 26 depend bool 1 1 (anti)
 edge 0 27 INP4 REAL 1 32
 edge 26 27 depend bool 1 1 (anti)
 edge 6 27 depend bool 1 1 (anti)
 edge 0 28 INP3 REAL 1 32
 edge 27 28 depend bool 1 1 (anti)
 edge 7 28 depend bool 1 1 (anti)
 edge 0 29 INP2 REAL 1 32
 edge 28 29 depend bool 1 1 (anti)
 edge 8 29 depend bool 1 1 (anti)

6

 edge 0 30 INP1 REAL 1 32
 edge 29 30 depend bool 1 1 (anti)
 edge 9 30 depend bool 1 1 (anti)
 edge 0 31 INP0 REAL 1 32
 edge 30 31 depend bool 1 1 (anti)
 edge 10 31 depend bool 1 1 (anti)
 edge 31 -1 INP1 REAL 1 32
 edge 30 -1 INP2 REAL 1 32
 edge 29 -1 INP3 REAL 1 32
 edge 28 -1 INP4 REAL 1 32
 edge 27 -1 INP5 REAL 1 32
 edge 26 -1 INP6 REAL 1 32
 edge 25 -1 INP7 REAL 1 32
 edge 24 -1 INP8 REAL 1 32
 edge 23 -1 INP9 REAL 1 32
 edge 22 -1 INP10 REAL 1 32
 edge 21 -1 OUTP REAL 1 32
 node 1 * - - -
 node 2 * - - -
 node 3 * - - -
 node 4 * - - -
 node 5 * - - -
 node 6 * - - -
 node 7 * - - -
 node 8 * - - -
 node 9 * - - -
 node 10 * - - -
 node 11 * - - -
 node 12 + - - -
 node 13 + - - -
 node 14 + - - -
 node 15 + - - -
 node 16 + - - -
 node 17 + - - -
 node 18 + - - -
 node 19 + - - -
 node 20 + - - -
 node 21 + - - -
 node 22 = - - -
 node 23 = - - -
 node 24 = - - -
 node 25 = - - -
 node 26 = - - -
 node 27 = - - -
 node 28 = - - -
 node 29 = - - -
 node 30 = - - -
 node 31 = - - -
 node -1 sink - - -
 node 0 source - - -
 end
 node -1 sink - - -
 node 0 source - - -
 end
node -1 sink - - -

Figure 2. CDFG file generated by cdfggen

 If we describe the VHDL file named ‘test.vhd’ such that the top configuration name is cfg_test, we

can generate a CDFG file directly from a VHDL file by running cdfggen as follows.

7

cdfggen –f test.vhd

In this case, cdfggen calls van before generating a CDFG file.

2.2 CDFG Format

 Figure 3 shows the BNF definition of our CDFG format.

CDFG ::=
edge_def_list | node_def_list [CDFG]

edge_def_list ::= edge_def [edge_def_list]
node_def_list ::= node_def [node_def_list]
edge_def ::=

edge predecessor_id successor_id name type weight bits [attribute_def_list]
node_def ::=

{module_def | operator_def | condition_def | iteration_def} [attribute_def_list]
operator_def ::=

node id oper_type hw_speed sw_speed hw_sw_type
oper_type ::=

"=" | "&" | "|" | "nand" | "nor" | "xor" | "==" | "!=" | "<" | "<=" | ">" | ">="
"+" | "-" | "*" | "/" | "%" | "concat" | "abs" | "exp" | "~"

condition_def ::=
node id cond hw_speed sw_speed hw_sw_type

condition id
subgraph_body_def

end
if_condition_body_def | case_condition_body_def

if_condition_body_def ::=
true id

subgraph_body_def
end
[false id

subgraph_body_def
end]

case_condition_body_def ::=
subgraph case_choice

subgraph_body_def
end
[case_condition_body_def]

subgraph_def ::=
subgraph id

subgraph_body_def
end

iteration_def ::=
node id loop hw_speed sw_speed hw_sw_type

iteration id
subgraph_body_def

end
subgraph_def

module_def ::=
node id module_name hw_speed sw_speed hw_sw_type

[length_type_def_list]
subgraph id

[assign_list]
subgraph_body_def

end
length_type_def ::=

length_type name type bits type_kind_def range_def [attribute_def_list]
length_type_def_list ::=

length_type_def [length_type_def_list]

8

assign_def ::=
assign actual formal

assign_def_list ::=
assign_def [assign_def_list]

type_kind_def ::=
"in" | "out" | "inout" | "subtype" | "array"

range_def ::=
range_left {to | downto} range_right

subgraph_body_def ::=
edge_def_list | node_def_list [subgraph_body_def]

attribute_def_list ::=
attribute_def [attribue_def_list]

attribute_def ::=
({literal_list | attribute_def} [literal_list | attribute_def])

literal_list ::=
literal [literal_list]

 Figure 3. CDFG format.

 Basically a CDFG is an acyclic graph which is composed of nodes and edges. The CDFG has

hierarchical structure where all the subgraphs are described in the same form. Each subgraph contains

source node with id 0 and sink node with id –1. In each subgraph, all the edges transferring input data are

connected to the source node and all the edges transferring output data are connected to the sink node.

Therefore, there exists no cycle in the graph.

 We classify a node into two types: operation node and hierarchical node. The operation node

corresponds to each operation in the input VHDL code (such as addition, subtraction, comparison and

multiplication). The hierarchical node includes module, condition and iteration node. By way of the

hierarchical node we can step into different hierarchy in the graph. The module node corresponds to top

entity, process, entity instantiation, and procedure (function) call in VHDL. Note that top entity FIR11 is

mapped to module node FIR11 in Figure 2. The condition node corresponds to the conditional construct of

VHDL. The condition node has multiple child subgraphs based on the type of the conditional construct. If

the condition node represents if.. then.. else.. construct, there exist three child subgraphs which correspond

to conditional predicate, true path and false path, respectively. If the condition node represents case

construct, there exist a subgraph for conditional predicate and one or more subgraphs where each

subgraph corresponds to each when construct in VHDL. In this case, the id of each subgraph corresponds

to the condition in when construct. The iteration node corresponds to the loop construct of VHDL. In the

iteration node, there are two child subgraphs which correspond to loop condition and loop body,

respectively.

 Each edge in CDFG represents dependency between nodes (including RAW(Read After Write)

dependency, WAR(Write After Read) dependency, WAW(Write After Write) dependency and control

dependency). If an edge represents RAW dependency, the edge corresponds to data transfer between nodes

9

whose name is the same as variable name or tempory name generated by cdfggen. If the edge represents

WAR or WAW dependency, the edge has a name “depend” with a dependency type (‘anti’ for WAR

dependency and ‘output’ for WAW dependency). In Figure 2, we can see that there exist anti dependencies

between assign operations. The type of the dependency is expressed by the attribute field in our CDFG

format. The attribute field is defined as a sub string between ‘(‘ and ‘)’. We define the attribute field for

the extendibility of our CDFG form. We can add any type of information by adding string to the attribute

field. In CDFG, a control dependency edge exists only in a conditional subgraph which belongs to a

condition node or a iteration node. The control dependency represents control signal transferred from the

conditional predicate node (usually a comparison operation). In this case, the name of the control

dependency edge is ‘ctrl’ and the type is ‘bool’.

 In CDFG, the symbols defined and used within subgraph is put in length_type field. The length_type

field plays the role of symbol table. This field shows the name, type and size of a variable defined within

subgraph. It also contains the interface signals whose type is IN, OUT or INOUT. Note that interface

signal INP0 and OUTP is put in length_type of FIR11 node in Figure 2.

 When we describe VHDL source code, we can use multiple instances of the same entity. In this case,

each instance is mapped to a unique node (a module node) in our CDFG. If the same entity is instantiated

multiple times, each instance has different I/O signals. In that case, we map the actual I/O signal to the

formal I/O signal by using assign field. Such mapping is necessary because we use the same form of

subgraph body even if it is multiply instantiated. In the following example, instance I1 of component A

has two formal I/O signals: inp and outp, which are mapped to actual I/O signals: sig1 and sig2,

respectively. In the CDFG, they are represented as ‘assign sig1 inp’ and ‘assign sig2 outp’ , respectively.

entity TOP is

end TOP;

architecture structure of TOP is

 signal sig1, sig2: integer;

 signal sig3, sig4: integer;

 component A is

 port (inp: in integer, outp: out integer);

 end component;

begin

 I1: A port map (inp=>sig1, outp=>sig2);

 I2: A port map (inp=>sig3, outp=>sig4);

end TOP;

2.3 Recommended VHDL description style suitable for CDFG generation

 CDFG generator does not support all the VHDL description style because there are many features

10

that cannot be represented in the form of graph in IEEE VHDL standard. Following is recommended

VHDL description style such that cdfggen can generate CDFG file safe and sound. If you want to describe

in other style or want to use any other VHDL constructs not listed here, try it. The CDFG generator may

produce a CDFG file, in some cases, error message or segmentation fault, otherwise.

-- You can describe Library or Use statement here. They are optional.
Library IEEE;
use WORK.all;

entity A is
port (....); -- describe port list

end A;

architecture B of A is
procedure ... -- We support procedure . but we cannot guarantee...
end procedure; -- We still support function but we also cannot guarantee...

component D
...

end component;
begin
I1: D port map (...); -- You can instantiate other entity. It is represented in a module node where port mapping is

-- represented in the form of ‘assign Actual Formal’ in CDFG
sig1 <= sig2 + sig3; -- You can use concurrent statements. But we recommend sequential statements within a
process.

P1: process -- We recommend behavior is described within process.
if ... then -- if statement is converted into a conditition node. Conditional predicate is converted into

... -- a condition subgraph beloing to the condition node

... -- true path is converted into a true subgraph.
else -- false path is converted into a false subgraph
 if ... then -- we support nested if statements.

end if
end if;

case ... is -- case statement is converted into a condition node.
when C1 => -- each when statement corresponds each subgraph belonging to the condition node

... -- where the name of subgraph corresponds to the case that the subgraph is
when C2 => -- activated.

...
end case;

while C0 loop -- while statement is converted into a iteration node where conditional predicate C0
... -- corresponds to a condition subgraph belonging to the iteration node.

end loop;

c := a + b; -- We support any kinds of arithmetic and logical operations.
s <= a * b;

end process
end B;

configuration cfg_A of A is -- You should describe configuration in complete form.
for A

for I1: D
use work.cfg_D;

end for;
end for;

end cfg_A;

11

3. CDFG to C(VHDL) Translator

3.1 CDFG to C converter

You can generate C code using cdfg2c. It generates behavioral C code not only from behavioral VHDL

code but also from structural VHDL code. The synchronous circuit described in structural VHDL code

can be converted into behavioral C code whose behavior is described cycle by cycle. It is similar to the

function of cycle based simulator. To convert structural VHDL code into C code, you should describe the

synchronous circuit in the following form.

 architecture STRUCTURAL of TOP is

 process (clk, sig1) -- You should describe the behavior within a process

 begin

 if (clk’event and clk==’1’) then -- You should check the clock event in this form

 -- You may describe the behavior between clock ticks here

 end if;

end process;

The usage of the cdfg2c is as follows.

usage: cdfg2c [options] input

options:

 -v : set verbose mode

 -a : Assume all the nodes are in SW part. This option is valid when the CDFG is partitioned into

HW part and SW part.

 -D : set debug mode

 -L library : set library (IEEE(default), STD)

 -o output : set output file name

 -i input : set input guide file. This option is valid when the input guide file is partitioned into HW

part and SW part.

 -g : generate cosimulation target C.

 -S : generate code according to initial schedule order

 -s : generate simulation code

 -m : generate monitor code

 -nosplit : don't split inout port. In some case we need to split inout port into input and output ports.

If this options is on we don’t split the port.

 -noempty : don't generate empty function. If some hierarchical node has empty subgraph, we

don’t need to generate code for this node.

 -flat : flatten symbols

12

 -t : split code for temporary edges.

 -Oc : minimize code size

 -c : genreate monitor code in each control step

 -fix : treat real variables as fixed point variabls.

3.2 CDFG to VHDL converter

 The purpose of this tool is to confirm if the generated CDFG is equivalent to the input VHDL code.

The generated code may have different form in orgianl code. However, they are functionally equivalent.

13

4. CDFG Parser

 We implemented a CDFG parser using C++ under UNIX environment. We use OOP concept for the

ease of usage and for the extendibility of data structure. The parser build a graph from a CDFG file

generated by our CDFG generator. Figure 4 shows class hierarchy of the parser. Node is a base class for

Condition, Iteration, and Module classes. Each Node class corresponds to each node in CDFG definition

(see Figure. 3). In the same way, Condition, Iteration and Module classes correspond to condition,

iteration, and module, respectively. Each Subgraph contains lists of edges and nodes. They are

represented as List Classes which are the list of pointers to Basic Classes. The name of each Basic Class is

the same as each identifier in CDFG definition (see Figure 3) except for the Auxiliary Classes. The

auxiliary classes corresponds to attribute field in CDFG definition which is represented in LISP form. In

the following section, we’ll explain about each class’s member data and member functions, not all of them

but a few important ones.

.

Node

Condition

 - Subgraph

Iteration

- Subgraph

Module

- Subgraph

CDFG

ExtCDFG

PtrList<T>

SLList<T>

NodePtrListEdgePtrList

AssignPtrList LengthTypePtrList

Edge Subgraph

LengthType Assign

Basic Classes

Link

LinkPtrList

List Classes

Auxiliary Classes

Figure 4. Class hierarchy of CDFG parser.

4.1 Node Class

Member Data:

• EdgePtrList Node::preds;

Description:

14

It contains pointer to input edges. The input edges are not always data transfer edges because

some edge represent control dependency or sementic meaning.

Related Functions:

 EdgePtrList* Node::getPreds()

void Node::addPred(Edge* e);

void Node::subPred(Edge *e);

Edge* Node::getPred(int index, int data_flag);

• EdgePtrList Node::succs;

Description:

It contains pointer to output edges. The input edges are not always data transfer edges because

some edge represent control dependency or sementic meaning.

Related Functions:

 EdgePtrList* Node::getSuccs();

void Node::addSucc(Edge* e);

void Node::subSucc(Edge *e);

Edge* Node::getSucc(int index, int data_flag);

• int Node::mark;

Description:

This field is reserved for user. It can be used to mark nodes during graph traversal – especially

during list scheduling.

Related Functions:

int Node::getMark(int m);

void Node::setMark(int m);

• short Node::type;

Description:

It represent the type of a node where the types are defined as enum N_TYPE in cdfg.h which

is defined as

enum N_TYPE {
N_NULL=0, // default
N_OPER=1, // operational node
N_MOD=2, // module
N_ITER=4, // iteration
N_COND=8 // condition

};
You can traverse node list in a subgraph and perform proper action for each node type as in the

15

following example.

void Test(Subgraph *subg)
{

NodePtrList &nlist = *subg->getNodes();
for (Pix pi=nlist.first(); pi; nlist.next(pi)) {

Node *n = nlist(pi);
switch (n->getType()) {

case N_OPER:
...

case N_MOD:
...

case N_COND:
...

case N_ITER:
...

}
}

}

Related Functions:

int Node::setType(int t);

N_TYPE getType();

• String Node::name;

Description:

 It contains the name of a node (this Node). It has valid name only when this Node is not an

operation node but Condition, Iteration, or Module node. The variable contains string “cond”,

“loop”, and “{name of module}” for Condition, Iteration, and Module, respectively.

Related Functions:

 char* Node::getName();

 void Node::setName(const char *n);

• int Node::id;

Description:

 This field indicates the id of each node. The id has positive value, where id values of 0 and –1

are reserved for source and sink nodes, respectively.

Related Functions:

int Node::setId(int i);

int Node::getId();

• int Node::op;

Description:

This field indicates the operation kind of the operation node. The kind of operation is defined

16

in token.h as operator_kind and my_operator_kind enumeration types.

Related Functions:

int Node::getOp();

void Node::setOp(int op);

• int Node::_no;

Description:

This field indicates the line number at which this Node is defined.

Related Functions:

void Node::setNo(int n);

int Node::getNo();

• Subgraph * Node::parent;

Description:

 It represents the pointer to parent Subgraph where the parent Subgraph belongs to one of

Module, Iteration, Condition, and CDFG classes.

Related Functions:

Subgraph* Node::getParent();

Node* Node::getPNode();

Node* Node::getPModule();

• LinkPtrList Node::_attrib;

Description:

List of attributes stored in Link class. The contents of attribute is described in textual form

wrapped around by parentheses, which are described as follows in the case of a node but not

limited to it.

 node 1 (cstep 1) (bind mult)

 Textual description for node Textual description for attributes

Related Functions:

 LinkPtrList* Node::getAttrib();

 Link* Node::findAttrib(const char *name);

 LinkPtrList* Edge::getAttrib();

 Link* Edge::findAttrib(cosnt char *name);

 LinkPtrList* LengthType::getAttrib();

 Link* Edge::findAttrib(const char *name);

17

• int Node::tstart, tend;

• int Node::pid;

Description:

 These are reserved member variables for scheduling and binding.

Related Functions:

 int Node::getTstart();

 int Node::getTend();

 void Node::setTstart(int);

 void Node::setTend(int);

 int Node::getPid();’

 void Node::setPid(int);

• int Node::hw_sw_type;

• int Node::sw_speed;

• int Node::hw_speed;

Description:

 These are reserved member variables for scheduling and binding.

• void * Node::info;

Description:

 This variable indicates the pointer to user defined structure. You can append your own data

structure using Node::setInfo() and Node::getInfo(). You are responsible for allocating and de-

allocating the user defined data. If you use ExtCDFG class, the class is in charge of allocation

and de-allocation of user defined data.

Related Functions:

 void Node::setInfo(void*);

 void* Node::getInfo();

Related Classes:

 class ExtCDFG;

Member Functions:

• int Node::setId(int id);

• int Node::getId();

18

Description:

See member variable int Node::id.

• void Node::setOp(int op);

• int Node::getOp();

Description:

It returns operation kind for an operation node (that is, this->getKind() == N_OPER). The

operation kind is defined in token.h. See member variable int Node::op for details.

• void Node::setNo(int n); int Node::getNo();

Description:

See member variable int Node::_no for details.

• void Node::setName(const char *n);

Description:

It sets the member variable String Node::name to the string contained in the argument ‘n’.

• char* Node::getName();

Description:

 It returns char* of the member variable String Node::name.

• int Node::setType(int t);

Description:

 It set the member variable short Node::type to the value in argument ‘t’. This function is

generally not used.

• N_TYPE Node::getType();

Description:

 It returns the type of this Node which is defined as

enum N_TYPE {
N_NULL=0, // default
N_OPER=1, // operational node
N_MOD=2, // module
N_ITER=4, // iteration
N_COND=8 // condition

};

See member variables short Node::type for details.

19

• int Node::setHwSpeed(int s); int Node::getHwSpeed();

• int Node::setSwSpeed(int s); int Node::getSwSpeed();

• int Node::setHwSwType(int t); int Node::getHwSwType();

Description:

This function is reserved for user. User can freely use these functions for the purpose of

scheduling and binding or for other purposes.

• void Node::addPred(Edge *e);

• void Node::addSucc(Edge *e);

Description:

These routines add new edge to the set of input and output edges (to the member variables

EdgePtrList Node::preds and EdgePtrList Node::succs), respectively.

• void Node::subPred(Edge *e);

• void Node::subSucc(Edge *e);

Description:

 These routines subtract an edge ‘e’ from the set of input and output edges (from the member

variables EdgePtrList Node::preds and EdgePtrList Node::succs), respectively.

• void Node::convPred(Edge *old, Edge *cur);

• void Node::convSucc(Edge *old, Edge *cur);

Description:

These routines replace an edge ‘old’ to the new edge ‘cur’ in EdgePtrList Node::preds and

EdgePtrList Node::succs, respectively.

Example:

Following routine shows how to swap two inputs which is connected to ‘node’.

// Assume ‘node’ is an operation node with two operands
Subgraph *parent = node->getParent();
Edge *inp0 = node->getPred(0, 1);
Edge *inp1 = node->getPred(1, 1);
// Change the order of edges in parent subgraph
parent->getEdges()->replace(inp0, 1);
parent->getEdges()->replace(inp1, inp0);
parent->getEdges()->replace(1, inp1);
// Change the order of input edges to ‘node’
node->convPred(inp0, 1);
node->convPred(inp1, inp0);
node->convPred(1, inp1);

• EdgePtrList* Node::getPreds();

20

• EdgePtrList* Node::getSuccs()

Description:

These routines return the pointer to EdgePtrList Node::preds and EdgePtrList Node::succs,

respectively. Refer to the related member variables for details.

• Edge* Node::getPred(int n, int data_flag=0);

• Edge* Node::getSucc(int n, int data_flag=0);

Description:

 These routines return n’th edge connected to the node. If data_flag has value 1, they return

n’th input(output) edge whose kind is E_DATA (which corresponds to data transfer edge).

Otherwise, they return n’th input(output) edge without checking the kind of an edge. If there

exists no n’th edge, they return NULL pointer.

Example:

// This example prints two inputs of node ‘n’

// Get the first input data edge

Edge *in1 = n->getPred(0, 1);

// Get the second one

Edge *in2 = n->getPred(1, 1);

printf(“Two inputs of %s\n”, n->getPos());

in1->dump();

in2->dump();

• int Node::getNumInPort(int edge_kind);

• int Node::getNumOutPort(int edge_kind);

Description:

These routines return the number of input(output) ports depending on the operation type of this

Node. If the type of operation(which can be obtained by Node::getOp()) of the node is binary

operation, it returns 2, otherwise 1. If the node is not an operational node, they return the number

of input(output) edges, where the kind(which can be obtained by Edge::getKind(int)) of the

input(output) edge is the same as the value of argument ‘edge_kind’.

• Subgraph* Node::getParent();

Description:

 It returns the pointer to the parent Subgraph which is stored in ‘parent’ member variable.

Refer to member variable Subgraph* Node::parent.

21

• Node* Node::getPNode();

Description:

 It returns the pointer to the nearest parent Node. Generally, it returns Node::getParent()-

>getParent(). When this Node has no parent (it is possible for the CDFG Class), it returns NULL

pointer.

• Node* Node::getPModule();

Description:

 It returns pointer to the nearest parent Module which contains this Node. If no parent

module is found, it returns NULL pointer.

• int Node::setMark(int m);

• int Node::getMark();

Description:

 These functions are reserved for the user. You can use these functions during graph traversal –

especially for list scheduling or for any other purposes.

• char* Node::getPos(char *buf=0);

Description:

 It returns the hierarchy position of this Node, where the position is described in the form of

string starting from ‘/’, followed by the integer value of node id, and delimited by ‘/’ whenever

hierarchy level increases. In the following example, the position of condition node is “/1/1”. If

the argument variable ‘buf’ is NULL, the function stores the return value to internal buffer and

returns the pointer to the buffer. Otherwise, it stores the return value to ‘buf’ and returns this

pointer.

node 0 ... // pos: “/0”
node 1 P1 ... // pos: “/1”

 subgraph
 node 0 ... // pos: “/1/0”
 node 1 cond .. // pos: “/1/1” -> if ... then ... else

cond 1
 node 0 ... // pos: “/1/1/_cond/0
end
true 1
 node 0 ... // pos: “/1/1/_true/0
end
false 1
 node 0... // pos: “/1/1_false/0
end

 node 2 cond ... // pos: “/1/2” -> case ... when ...
cond 1
 node 0 ... // pos: “/1/2/_cond/0
end

22

subgraph 10
 node 0 ... // pos: “/1/2/_subg0/0
end
subgraph 20
 node 0 ... // pos: “/1/2/_subg1/0
end
subgraph 30
 node 0 ... // pos: “/1/2/_subg2/0
end

 end
 node 3 loop ... // pos: “/1/3” -> while ... loop ...

iteration 3
 node 0 ... // pos: “/1/3/_cond/0
end
subgraph 3 // pos: “/1/3/0
 node 0 ...
end

 node 4 MODULE1 ... // pos: “/1/4” -> module node
subgraph 4
 node 0 ... // pos: “/1/4/0”
end

 end

• Node* Node::findPos(char *pos);

Description:

 It finds and returns a node whose position is the same as the string contained in ‘pos’. If

there exist no such node, it returns NULL pointer.

• Node* Node::findNode(const char *nname);

Description:

Find a node whose name (stored in Node::name) is the same as ‘nname’ among the nodes

belonging to the Subgraph of this Node.

• Node* Node::getTop();

Description:

 It returns pointer to the top Node (CDFG).

• int Node::getLevel();

Description:

 It returns the hierarchy level of this Node. The top Node (CDFG) has level 0. The hierarchy

level increases by one as we step into each hierarchy node (Condition, Iteration, and Module).

Following example shows hierarchy level in CDFG.

edge ...
node 0 ... // level = 0
node 1 P1 ... // level = 0
 subgraph

node 0 ... // level = 1

23

node 1 cond // level = 1
 condition
 node 0 ... // level = 2
 end

 subgraph
 node 0 ...// level =2

 end
 end

• LinkPtrList* Node::getAttrib();

Description:

 It returns the pointer to LinkPtrList which contains the attributes of this Node.

Related Classes:

 Class LinkPtrList;

 Class Link;

• Link* Node::findAttrib(char *name);

Description:

 It searches for the attribute whose identifier is the same as ‘name’. The attribute is defined

as a sequence of string wrapped around by left and right parentheses. We assume the first string

of the sequence is the identifier of the attribute.

Example:

 This examples find attribute whose identifier is “cstep” and print the value related to the

attribute.

// This is a part of a textual CDFG file.

node 3 + - - - (cstep 10) (bind mult)

// This is a part of a C++ code.

Link *cstep = node->findAttrib(“cstep”);

Link *bind = node->findAttrib(“bind”);

if (cstep) printf(“cstep: %d\n”, cstep->item(1)->intValue());

if (bind) printf(“bind: %s\n”, bind->item(1)->value());

• void Node::setTstart(int ts); int Node::getTstart();

• void Node::setTend(int te); int Node::getTend();

• void Node::setPid(int pid); int Node::getPid();

Description:

These routines are reserved for the user. It can be used during scheduling (Node::getTstart(),

Node::setTstart(), Node::getTend(), and Node::setTend()) and binding (Node::setPid() and

Node::getPid()).

24

• void* Node::getInfo();

• void Node::setInfo(void *);

Description:

 These routines allow the user to attach user defined data structure to a Node. See member

variable void* Node::info for details.

Related Class:

 class ExtCDFG;

• virtual Subgraph* Node::getCond();

Description:

 It returns pointer to Subgraph which contains conditional predicate (Condition and

Iteration). If this Node does not contain condition Subgraph, it return NULL pointer.

• virtual Subgraph* Node::getTrue();

• virtual Subgraph* Node::getFalse();

Description:

 It returns pointer to Subgraph which contains true(false) path of Condition node. If the type

of this Node is not N_COND, it returns NULL pointer.

• Subgraph* Node::getSubg(int i=0);

Description:

 It returns the i’th subgraph which the node contains. If the node is not an hierarchical node,

it returns NULL pointer. It also returns NULL pointer when there does not exist i’th Subgraph.

The return value for each combination of the value of ‘i’ and the type of the node is as follows.

Condition Iteration Module Node

i = -1 Subgraph* for false path NULLkj NULL NULL

i =0 Subgraph* for true path Subgraph* Subgraph* NULL

i>0 NULL Subgraph* NULL NULL

or NULL

Example:

 This example scans all the Subgraphs that node contains and print out the contents of each

Subgraph.

int num_subg = node->getNumSubg();

for (int i=-1; i < num_subg; i++) { // Note: index starts from -1

25

Subgraph *subgi = node->getSubg(i);

if (!subgi) continue; // No i’th Subgraph exists

subgi->dump(); // print out the contents of i’th Subgraph

}

• virtual int Node::getNumSubg();

Description:

 It returns the number of Subgraphs (except for the conditional predicate Subgraph which

can be obtained by Subgraph* Node::getCond()) which belong to this Node.

• int Node::isHierarchy();

Description:

 It returns 1 if this Node is a hierarchy node (Condition, Iteration, and Module). Otherwise,

it returns 0.

• virtual void Node::print(int level=1, FILE *fp=stdout, int indent=0);

Description:

It prints out the contents of this Node. The first argument indicates the level of printing out. If

the ‘level’ is zero, it does not print out the contents of its Subgraph. Otherwise, it prints out

contents of all the nodes and edges in Subgraph. The second argument indicates the output file

pointer to which the contents of a node will be printed out. The last argument, ‘indent’, indicates

the number of indentation for printing out.

• virtual void Node::dump(int level=0);

Description:

It prints out the contents of this Node by using the member function, void Node::print(). This

function can be used for the purpose of debugging. During debugging your program, you can see

the contents of a node by calling this function.

• virtual LengthType* Node::findType(const char *typename, int level=0);

Description:

It searches for a user defined type whose name is the same as the first argument ‘typename’. If

‘level’ is zero, it searches only child Subgraphs. Otherwise, it also searches parent Subgraphs for

the type. If there exists no matching entry in symbol table(LengthTypePtrList in Module), it

returns NULL.

26

• virtual LengthType* Node::findSym(const char *name, int tag=1, int level=0);

Description:

It searches for a variable whose name is the same as the first argument ‘name’. The second

argument ‘tag’ indicates tag matching option during string comparison. It is for the case of

indexed variables. If the string stored in ‘name’ is “ABC(I)” and the ‘tag’ flag is 1, it compares

only the tag name “ABC” excluding the other index name “(I)”. The final argument ‘level’

indicates the range where searching has effect. If the ‘level’ is 0, it searches only child

Subgraphs for the variable. However, if the ‘level’ is 1, it also searches parent Subgraphs for the

variable. If there exists no matching entry in symbol table (LengthTypePtrList in Module), it

returns NULL.

• virtual int Node::getKind();

Description:

It returns the kind of a node. The kind of the node is dependent on the type of the deriving

class which is one of the followings.

// For Condition class (getType()== N_COND)
enum COND_KIND {

COND_IF, // if ... then ... else
COND_CASE // case ... when

};
// For Iteration class (getType() == N_ITER)
enum ITER_KIND {

ITER_NULL=0,
ITER_FOR,
ITER_WHILE

};
// For CDFG class (getType() == N_MOD)
enum CDFG_KIND {

C_NORMAL=1,
C_HYPER=2,
C_FLAT_MOD=4,
C_FLAT_LOOP=8

};

• virtual void Node::parseInit();

Description:

 This function is called for the initialization of this Node, while input CDFG file is parsed. If

you derive class from Node or you want to append your own data structure using Node::info

field, you can initialize your own data structure by defining your initialization function here. In

addition, you can use virtual void CDFG::parseInit(Node*) for this purpose. In this case, you

should derive your own CDFG class from base CDFG class and define the member function.

The ExtCDFG class is devised for such purpose. For details, refer to ExtCDFG class.

27

• virtual void Node::copy(Node *src);

Description:

 This function is called for copying contents from another node ‘src’. It should be modified if

you attach your own data structure to CDFG by derivation or by using Node::info field. Refer to

ExtCDFG class for details.

4.2 Module Class

Member Data:

• LengthTypePtrList Module::ltlist;

Description:

 It is a kind of symbol table which contains information on each variable such as the type of

the variable, bit length, and initial value. Details are described in section 4.7 LengthType Class.

• Subgraph Module::nsubg;

Description:

 This class corresponds to subgraph belonging to a Module node. If you call

Node::getSubg(), we can obtain pointer to ‘nsubg’.

Member Functions:

• virtual LengthType* Module::findType(const char *type, int level=0);

• virtual LengthType* Module::findSym(const char *name, int tag, int level=0);

Description:

 Refer to Node class.

4.3 Iteration Class

Member Data:

• Subgraph Iteration::ncond;

Description:

 This variable is for a conditional Subgraph corresponding to a conditional predicate. If you

call Node::getCond() in Iteration class, we obtain pointer to this variable.

• Subgraph Iteration::nsubg;

Description:

 This variable is for a child Subgraph of Iteration class which corresponds to a loop body. If

you call Node::getSubg(0) in Iteration class, we obtain pointer to this variable.

28

4.4 Condition Class

Member Data:

• Subgraph Condition::ncond;

Description:

This variable is for a conditional Subgraph corresponding to a conditional predicate. If you

call Node::getCond() in Condition class, we obtain pointer to this variable.

• Subgraph Condition::nfalse;

Description:

This variable contains Subgraph for a false path in conditional branch. If you call

Node::getSubg(-1) or Node::getFalse(), you can obtain pointer to this variable.

• SLList<Subgraph*> Condition::ntrues;

Description:

 This variable contains Subgraphs for true paths in conditional branch. Generally, there is only

one true path (if ... then ... else ...). There can be multiple true paths in case of case contruct.

You can obtain ith Subgraph by calling Node::getSubg(i) in Condition class. Each true path

corresponds to each when construct in VHDL. In this case the name of each Subgraph

corresponds to the condition in which the when construct is activated.

4.5 Edge Class

Member Data:

• Node * Edge::pred;

Description:

This variable indicates a pointer to predecessor Node.

Related Functions:

Node* Edge:getPred(); Node* Edge::setPred(Node *p);

• Node * Edge::succ;

Description:

This variable indicates a pointer to successor Node. There is only one successor if the kind of

the top CDFG is C_NORMAL. If the kind of the top CDFG is C_HYPER, there can be multiple

successors which are stored in NodePtrList Edge::_succs (experimental).

Related Functions:

29

Node* Edge::getSucc(); Node* Edge::setSucc(Node *s);

• String Edge::name;

Description:

This variable indicates the name of an edge. The name corresponds to the variable name

explicitly given in VHDL, the reserved, name or the temporary name implicitly given by

cdfggen. The naming convention in the edge’s name and type is as follows.

name type description
tmp* - Temporary variable. The variable is stored in symbol

table as LengthType in parent node.
depend bool Reserved variable name and type for representing

control dependencies
others others Variable name and type explicitly given in VHDL

Related Functions:

void Edge::setName(const char *n);

char* Edge::getName();

• String Edge::type;

Description:

This variable indicates the type name of an edge. It corresponds to the type of the data,

reserved type by cdfggen. For the naming convention on edge’s name and type, refer to String

Edge::name.

Related Functions:

char* Edge::getType();

void Edge::setType(const char *t);

• int Edge::weight;

Description:

This variable indicates the weight of the data transfer by this Edge. If the transferred data is

array type, the value of weight can be larger than 1, otherwise, the value is always 1.

Related Functions:

void Edge::setWeight(int w);

int Edge::getWeight();

• int Edge::bits;

Description:

30

This variable indicates the number bits transferred through this Edge. It is computed as the

product of weight and the number of bit for Edge::type. The number of bits corresponding to

Edge::type is defined in symbol table(Module::LengthTypePtrList) of parent node.

Related Functions:

 void Edge::setBits(int b);

 int Edge::getBits();

• int Edge::mark;

Description:

This variable is reserved for the user. It can be used during graph traversal for marking visited

edges.

Related Functions:

void Edge::setMark(int m);

int Edge::getMark();

• short Edge::kind;

Description:

This variable represents the kind of this Edge. The kind of each edge is defined as

enumeration type, EDGE_KIND, which is described as follows.

enum EDGE_KIND {
E_NULL = 0,
E_DATA = 1,
E_CTRL = 2,
E_ENDLOOP = 4,
E_DEPEND = 8,
E_EVENT = 0x10,
E_RETURN = 0x20

};
Related Functions:

int Edge::getKind(int calc=0);

• int Edge::port;

Description:

This variable is reserved for the user.

Related Functions:

void Edge::setPort(int p);

int Edge::getPort();

31

• LinkPtrList Edge::_attrib;

Description:

This variable contains attributes attached to this Edge. For the definition and use of attribute

field, refer to section 2.2, LinkPtrList Node::_attrib, and Link* Node::findAttrib(const char*).

Related Functions:

LinkPtrList* Edge::getAttributes();

Link* Edge::findAttrib(const char *n);

• int Edge::_no;

Description:

 This variable represent the line number in textual CDFG file.

Related Functions:

void Edge::setNo(int n);

int Edge::getNo();

• int Edge::tstart, tend;

Description:

This variables are reserved for the user. They can be used during scheduling and binding.

Related Functions:

int Edge::getTstart(); int Edge::setTstart(int ts);

int Edge::getTend(); int Edge::setTend(int te);

• void* Edge::info;

Description:

This variable contains the pointer to user defined data structure. For details, refer to void*

Node::info, void* Node::getInfo(), and ExtCDFG class.

Related Functions:

void Edge::setInfo(void *i);

void* Edge::getInfo();

Member Functions:

• Node* Edge::setPred(Node* p); Node Edge::getPred();

Description:

 These routines set and return the pointer to a predecessor node.

32

• Node* Edge::setSucc(Node* s); Node Edge::getSucc();

Description:

These routines set and return the pointer to a successor node.

• void Edge::setPort(int p); int Edge::getPort();

Description:

These routines set and return the value of Edge::port. They are reserved for the user.

• int Edge::setMark(int m); int Edge::getMark();

Description:

These routines are reserved for the user. They can be used during scheduling and binding.

• void Edge::setName(const char *n); char * Edge::getName();

Description:

 These routines set and get the name of an edge. For details, refer to String Edge::name.

• void Edge::setType(const char* t); char* Edge::getType();

Description:

These routines set and get the type of an edge. For details, refer to String Edge::type.

• int Edge::setWeight(int w); int Edge::getWeight();

Description:

These routines set and get the weight of an edge. For details, refer to int Edge::weight.

• int Edge::setBits(int b); int Edge::getBits();

Description:

 These routines set and get the number of bits of an edge. For details, refer to int Edge::bits.

• int Edge::getKind(int calc=0);

Descripton:

This routine returns the kind of an edge. If the argument ‘calc’ has non-zero value, it again

check the name and type of the edge to return proper edge kind presented in int Edge::kind.

Since it takes time for the checking, we usually use the result obtained in previous call. We use

such scheme by setting the argment ‘calc’ to 0.

33

• int Edge::isConst();

Description:

This routine tells if the data transferred by this Edge is constant type. It checks a few leading

characters of String Edge::Name for checking. Thus, it may return incorrect result. However, it

always returns correct result for the cdfg file generated by cdfggen, because syntax on the

variable naming convention is checked during parsing input VHDL description.

• void Edge::setNo(int n); int Edge::getNo();

Description:

These routines set and get the line number in the input CDFG file. For details, refer to int

Edge::_no.

• LinkPtrList* Edge::getAttrib();

Description:

It returns pointer to LinkPtrList which contains the list of Links which correspond to attribute

field in the textual CDFG format. For details, refer to section 2.2, Link* Node::findAttrib(char

*n), and LinkPtrList Node::_attrib.

• Link* Edge::findAttrib(char *name)

Description:

It searches for the attribute whose identifier is the same as ‘name’. The attribute is defined as a

sequence of string wrapped around by left and right parentheses. We assume the first string of

the sequence is the identifier of the attribute.

Example:

The following example shows how to access the user defined attribute field whose identified

is “bind”.

// This is a part of input CDFG file
edge 0 1 ... (bind reg1)
edge 1 2 ... (bind reg2)

// This is a part of C++ code
Subgraph *subg = mycdfg.getSubg();
EdgePtrList &edges = *subg->getEdges();
for (Pix pi=edges.first(); pi; edges.next(pi)){

Edge *e = edges(pi);
Link *bind_attr = e->findAttrib(“bind”);
if (bind_attr) printf(“%s\n”, bind_attr->item(1)->value());

}

34

• void Edge::setTstart(int ts); int Edge::getTstart();

Description:

These routines are reserved for the user to set and get int Edge::tstart.

• void Edge::setTend(int ts); int Edge::getTend();

Description:

These routines are reserved for the user to set and get int Edge::tend.

• void Edge::setInfo(void *i); void* Edge::getInfo();

Description:

These routine set and get the pointer to user defined data structure stored in void* Edge::info.

• int Edge::compare(Node *pred, Node *succ, const char *name, int wildcmp=0, const char *type=0,

int kind=0);

Description:

This function returns one if the contents of this Edge is the same as all the arguments. The

matching pair (Argument and content in Edge) is summarized as follows

Argument Argument Value Edge Comparison
prev NULL - No
prev non-zero Edge::prev Yes
succ NULL - No
succ non-zero Edge::succ Yes
name NULL - No
name non-zero Edge::name Yes
wildcmp 0 Edge::name Full comparison
wilecmp 1 Edge::name Partial comparison
type NULL - No
type non-zero Edge::type Yes
kind 0 - No
kind non-zero Edge::kind Yes

The partial comparison means comparison of only N leading characters where N = strlen(name).

• virtual void Edge::print(FILE *fp=stdout, int i=0);

Description:

This routine prints out the contents in this Edge. The first argument indicates the file pointer to

which output will be printed. The second argument indicates the size of indentation.

35

• virtual void Edge::parseInit();

Description:

This function is called for the initialization of this Edge, while input CDFG file is parsed. If

you derive class from Edge or you want to append your own data structure using Edge::info field,

you can initialize your own data structure by defining your initialization function here. In

addition, you can use virtual void CDFG::parseInit(Edge*) for this purpose. In this case, you

should derive your own CDFG class from base CDFG class and define the member function.

The ExtCDFG class is devised for such purpose. For details, refer to ExtCDFG class.

• virtual void Edge::copy(Edge *src);

Description:

 This function is called for copying contents from another node ‘src’. It should be modified if

you attach your own data structure to CDFG by derivation or by using Edge::info field. Refer to

ExtCDFG class for details.

4.6 Subgraph Class

Member Data:

• int Subgraph::id;

Description:

This variable contains the id of each Subgraph. It is generally not used.

Related Functions:

int Subgraph::setId(int i);

int Subgraph::getId();

• String Subgraph::pname;

Description:

This variable contains the primary name of this Subgraph. It usually has the string “subgraph”

in most cases. The following table shows the pname in accordance to the type of parent subgraph.

Parent Subgraph Type Subgraph::pname

Condition conditional “cond”

Condition true path (if ... then ... else) “true”

Condition false path “false”

Condition true path (case ... when ...) “subgraph”

Iteration conditional “iteration”

36

Iteration loop body “subgraph”

Module child Subgraph “subgraph”

The following example shows how the Subgraph::pname is determined. In the examples, the

string in bold face indicates the value of Subgraph::pname.

node 0 ...
node 1 P1 ...

 subgraph 1
 node 0 ...
 node 1 cond .. -> if ... then ... else

cond 1
 node 0 ...
end
true 1
 node 0 ...
end
false 1
 node 0...
end

 node 2 cond ... -> case ... when ...
cond 1
 node 0 ...
end
subgraph 10
 node 0 ...
end
subgraph 20
 node 0 ...
end
subgraph 30
 node 0 ...
end

 end
 node 3 loop ... -> while ... loop ...

iteration 3
 node 0 ...
end
subgraph 3
 node 0 ...
end

 node 4 MODULE1 ... -> module node
subgraph 4
 node 0 ...
end

 end

Related Functions:

void Subgraph::setPName(const char *n);

char* Subgraph::getPName();

• String Subgraph::name;

Description:

This variable contains the secondary name of this Subgraph. It has meaning only when the

type of parent Node is N_COND and the kind of the node is COND_CASE. This variable

37

contains the case when each ‘when’ statement is activated. Following example shows how the

value of Subgraph::name is determined.

// This is a part of an input VHDL file
case input =>

when “1111” => ...
when “1110” => ...
...

end case;

// This is a part of a textual CDFG file
node 1 cond ...
 cond 1
 end
 subgraph “1111” // Subgraph::name = “1111”
 end
 subgraph “1110” // Subgraph::name = “1110”
 end

Related Functions:

void Subgraph::setName(const char *n);

char* Subgraph::getName();

• NodePtrList Subgraph::nlist;

Description:

This variable is the list of nodes which belong to this Subgraph. The nodes belonging to this

Subgraph are those defined between subgraph(or other equivalent primary name defined in

Subgraph::pname) and end keywords as shown in the following example.

node 1 TOP - - -
 subgraph 1

 node 0 source - - - // element in Subgraph::nlist
 node 1 + - - - // element in Subgraph::elist

 end

The user does not need to de-allocate the Node classes which are added to this Subgraph by the

user (by way of Subgraph::addNode() or other methods). The destructor of the Subgraph class

automatically de-allocates all the elements in Subgraph::nlist by using delete.

Related Functions:

void Subgraph::addNode(Node *n); void Subgraph::subNode(Node *n);

NodePtrList* Subgraph::getNodes();

• EdgePtrList Subgraph::elist;

Description:

38

This variable is the list of edges which belong to this Subgraph. The user does not need to de-

allocate the Edge classes which are added to this Subgraph by the user (by way of

Subgraph::addEdge() or other methods). The destructor of the Subgraph class automatically de-

allocates all the elements in Subgraph::elist by using delete.

Related Functions:

void Subgraph::addEdge(Edge *e); void Subgraph::subEdge(Edge *e);

EdgePtrList* Subgraph::getEdges();

• AssignPtrList Subgraph::alist;

Description:

 This variable is the list of pointers to Assign classes. The Assign class maps I/O signal names

between boundary of component instantiation and function call. For more details, refer to Assign

class. The user does not need to de-allocate the Assign classes which are added to this Subgraph

by the user (by way of Subgraph::addAssign() or other methods). The destructor of the

Subgraph class automatically de-allocates all the elements in Subgraph::alist by using delete.

Related Functions:

void Subgraph::addAssign(Assign *a); void Subgraph::subAssign(Assign *a);

AssignPtrList* Subgraph::getAssigns();

• Node * Subgraph::parent;

Description:

This variable indicates the pointer to parent Node. The parent node can be one of Module,

Condition, Iteration, and CDFG classes.

Related Functions:

Node* Subgraph::setParent(Node n); Node* Subgraph::getParent();

Node* Subgraph::getTop();

• Node ** Subgraph::map;

Description:

This variable plays the role of mapping table between a node’s id and the pointer to the node.

It is used in Node* Subgraph::node(int i). Since child nodes are stored in NodePtrList

Subgraph::nlist, it take time for find a node in the list. This table is implemented for the purpose

of fast node searching by way of the node’s id which can be used as an index of the mapping

39

table.

Related Functions:

Node* Subgraph::node(int id);

void Subgraph::mapNode(int parse=1);

• int Subgraph::num_node;

Description:

This variable indicates the number of node within this Subgraph.

• void * Subgraph::info;

Description:

 This variable indicates the pointer to user defined structure. You can append your own data

structure using Subgraph::setInfo() and Subgraph::getInfo(). You are responsible for allocating

and de-allocating the user defined data. If you use ExtCDFG class, the class is in charge of

allocation and de-allocation of user defined data.

Related Functions:

 void Subgraph::setInfo(void*);

 void* Subgraph::getInfo();

Member Functions:

• int Subgraph::setId(int i); int Subgraph::getId();

Description:

These routines set and get the id (stored in Subgraph::id) of this Subgraph. The id of the

subgraph is usually not used.

• void Subgraph::setPName(const char* n); char* Subgraph::getPName();

Description:

These routines set and get the primary name of this Subgraph (stored in Subgraph::pname).

For details, refer to String Subgraph::pname.

• void Subgraph::setName(const char*n); char* Subgraph::getName();

Description:

These routines set and get the secondary name (stored in Subgraph::name) of this Subgraph.

40

• void Subgraph::addNode(Node *n);

Description:

 This routine appends a Node ‘n’ to this Subgraph, where the node ‘n’ is stored in

Subgraph::nlist.

• void Subgraph::addEdge(Edge *e);

Description:

 This routine appends an Edge ‘e’ to this Subgraph, where the edge ‘e’ is stored in

Subgraph::elist.

• void Subgraph::addAssign(Assign *a);

Description:

 This routine appends an Assign ‘a’ to this Subgraph, where the assign ‘a’ is stored in

Subgraph::alist.

• void Subgraph::subNode(Node *n);

Description:

This routines subtract a node ‘n’ from this Subgraph (from the member data Subgraph::nlist).

• void Subgraph::subEdge(Edge *e);

Description:

 This routines subtract an edge ‘e’ from this Subgraph (from the member data Subgraph::elist).

• void Subgraph::subAssign(Assign *a);

Description:

 This routines subtract an assign ‘a’ from this Subgraph (from the member data

Subgraph::alist).

• NodePtrList* Subgraph::getNodes();

Description:

It returns the pointer to the member data Subgraph::nlist.

• EdgePtrList* Subgraph::getEdges();

Description:

It returns the pointer to the member data Subgraph::elist.

41

• AssignPtrList* Subgraph::getAssigns();

Description:

It returns the pointer to the member data Subgraph::alist.

• Node* Subgraph::setParent(Node* n); Node* Subgraph::getParent();

Description:

These routines set and get the parent Node of this Subgraph.

• Node* Subgraph::getTop();

Description:

It returns the pointer to the top Node(that is, CDFG).

• Node* Subgraph::node(int id);

Description:

It finds a node whose id is the same as the argument ‘id’ and returns the pointer to the node. It

uses the mapping table Subgraph::map for fast searching. In the CDFG, there are two reserved

id’s, -1 for sink and 0 for source node. Therefore, the valid range of the first argument ‘id’ is

between –1 and the value returned by Subgraph::getMaxNodeId().

• int Subgraph::empty();

Desrciption:

It returns 0 if this Subgraph is empty. Otherwise, it returns 1.

• int Subgraph::getNumNodes(int level=0);

• int Subgraph::getNumEdges(int level=0);

Description:

It returns the number of nodes(edges) within this Subgraph. It returns different values

according to the value of argument ‘level’. Following table summarizes the relation between the

value of ‘level’ and the return value.

level Return Value

0 Number of nodes(edges) within this Subgraph excluding all the

child nodes in different hierarchy.

1 Number of nodes(edges) within this Subgraph including all the

42

child nodes in different hierarchy.

2 The return value is similar to that returned when ‘level’ is 1 except

that duplicated I/O edges and source/sink nodes are not counted.

• int Subgraph::getMaxNodeId();

Description:

This function returns the maximum value of node’s ID belonging to this Subgraph. You can

use this function to assign ID to a node which is added in your program. Following example

shows how to insert your own node to this Subgraph.

// ‘n’ is your own node which will be added to the graph

n = new Node(subg->getMaxNodeId()+1); //Set the node’s ID such that there is no duplication.

... / Build your own Node here.

subg->addNode(n);

• void Subgraph::parse(FILE *fp);

Description:

This routine parses the file indicated by the file pointer ‘fp’. It is used by nodes in upper level.

The end user need not use this function.

• void Subgraph::print(int level=1, FILE *fp=stdout, int i=0);

Description:

It prints out the contents of this Subgraph. The effect of the three arguments is the same as in

void Node::print(int, FILE*, int).

• void Subgraph::dump(int level=0);

Description:

This routine calls the member function Node::print(level, stdout, 0). It can be used in the

course of source code debugging.

• void Subgraph::mapNode(int parse=1);

Description:

This function builds mapping table implemented as Node** Subgraph::map. If the argument

is ‘1’, this function also connects each edge to each node based on the intermediate information

in the course of parsing. It the argument is ‘0’, it builds Node** Subgraph::map and re-connects

43

an edge to a node based on the predecessor and successor information contained in each edge.

The second option (parse = 0) is useful when we want to modify connection of the graph. To

modify the graph, we first change the pointer to a predecessor and a successor of each node, then

we still have to change the input and output edge connected to the predecessor and the successor.

This job is tedious and error-prone, because we have to preserve the order of input edges

connected to each node while modifying the graph. Simpler method is to first change the pointer

to a predecessor and a successor of each node and call the Subgraph::mapNode() with the parse

argument set to 0.

• void Subgraph::getType();

Description:

 This function returns the type of a subgraph, where subgraph type is defined as

enum SUBG_T {

ST_NULL = 0,

ST_COND, // Subgraph for conditional predicate (in if … then … else and while)

ST_ITER, // Subgraph for loop body

ST_TRUE, // Subgraph for true path in if … then … else

ST_FALSE, // Subgraph for false path in if … then … else

ST_SUBG // Normal Subgraph

};

• void Subgraph::recurCall(void (*func)(Node , void *), void *arg);

Description:

 This function calls a function transferred by the first argument func for each node in a sub-

graph such that the first argument to func is pointer to each node in the sub-graph and the second

one is pointer to the user argument transferred to Subgraph::recurCall as second argument arg.

The function func is called while recursively scanning the hierarchical sub-graphs. Following

example show how to set the marking value of each node belonging to the sub-graph subg.

void SetMark(Node *n, void *arg) {

int markvalue = * (int*)arg;

n->setMark(markvalue);

}

void SetSubgMark(Subgraph *subg, int markvalue) {

subg->recurCall(SetMark, &markvalue);

}

44

• void Subgraph::getInfo(); void Subgraph::setInfo(void *);

Description:

 This routines get and set the Subgraph::info variable. For details refer to ExtCDFG class.

4.7 LengthType Class

Member Data:

• String LengthType::name;

Description:

 This variable represents the name of symbol where each symbol name corresponds to the

name of each data transfer edge in the CDFG.

• String LengthType::type;

Description:

 This variable represents symbolic name of each data symbol. It may be reserved type such

as “INTEGER” and “REAL”, or user defined data type.

• int LengthType::bits

Description:

 This variable indicates the number of bits for representing the data.

• short LengthType::type_kind;

Description:

 This variable indicates the kind of data type which is defined as

enum LT_KIND {

LT_NULL = 0,

LT_IN = 1, // input port

LT_OUT=2, // output port

LT_INOUT=4, // inout port

LT_SUBTYPE=8, // subtype

LT_ARRAY=0x10, // Array Type

LT_CONSTANT=0x20, // Constant type

LT_INDEX // Index type

};

There are two categories of LengthTypes based on the value of LengthType::type_kind. If the

value is one of LT_IN, LT_OUT, LT_INOUT, and LT_CONSTANT, the symbol in the LengthType

class corresponds to variable, signal, and constant in VHDL. Otherwise, it is a supplementary

symbol table entry which is related to user defined type(LT_SUBTYPE) or array

45

type(LT_ARRAY).

• int LengthType::left, right;

Description:

 This variables represent the range (left range and right range) of a data.

• String LengthType::constants;

Description:

 This variable contains the (initial) value of the constant type symbol.

• Module* LengthType::pmodule;

Description:

 This variable indicates the pointer to the parent Module to which this symbol table

(LengthType) belongs.

• LengthType* LengthType::child;

Description:

 This variable holds pointer to the child LenghType. The child LengthType exists only when

the kind(in LengthType::type_kind) of a parent LengthType is LT_SUBTYPE. The child

LengthType corresponds to the base type in the definition of subtype in VHDL.

• int LengthType::port;

• int LengthType::mark;

Description:

 This variables are reserved for the user.

• LinkPtrList LengthType::_attrib;

Description:

 This variable corresponds to attribute field in the input CDFG file. For details refer to

Node::findAttrib();

Member Functions:

• void LengthType::setPort(int p); int LengthType::getPort();

• void LengthType::setMark(int m); int LengthType::getMark();

46

Description:

 These functions are reserved for the user. They give methods to access the member

variables LengthType::port and LengthType::mark.

• Module* getPModule();

Description:

 This function returns the value stored in LengthType::pmodule.

• int LengthType::isSym();

Description:

 This function returns 1 if the symbol in this LengthType corresponds to real symbolic data.

That is, the symbol name represents the name of real data such as variable, signal and constant in

VHDL.

• LinkPtrList* LengthType::getAttrib();

Description:

 It returns the pointer to LengthType::_attrib variable.

• Link* LengthType::findAttrib(char *name);

Description:

 It finds the attribute fields attached to the LengthType. For details refer to Node::findAttrib().

• void LengthType::print(FILE *fp, int indent); void LengthType::dump();

Description:

 It prints out the contents in this class. It can be used for debugging.

4.8 Assign Class

Member Data:

• String Assign::actual;

Description:

 This variable contains actual name of interface variable. The interface variable indicates the

argument of function and procedure or port of an entity. The actual name means the symbolic

name of a variable used in upper hierarchy. On the other hand, the symbolic name of a variable

used in current hierarchy(or lower hierarchy) is referred as formal name.

47

• String Assign::formal;

Description:

 This variable contains formal name of interface variable. The interface variable indicates

the argument of function and procedure or port of an entity. The formal name means the

symbolic name of a variable used in current hierarchy. On the other hand, the symbolic name of

a variable used in upper hierarchy is referred as actual name.

Member Functions:

• void Assign::print(FILE *fp, int indent); void Assign::dump();

Description:

 These functions print out the contents of the class. It can be used for debugging.

4.9 PtrList<T>

The PtrList<T> class is a linked list of pointers. It is used to manage lists of Node classes and Edge

classes as well as Assign, LengthType, and Link classes. The class is derived from SLList<T> class which

is included in GNU g++ library. The SLList<T> class provides singly linked data structure where we

don’t need to explicitly build data structure for linked list. In PtrList<T> class, we added several member

functions for the ease of manipulating list of pointers: for example, searching pointer, replacing existing

pointer, finding i’th element, removing matching pointers, etc.

Member Functions:

• T* PtrList<T>::isIn(T* d, Pix *last_pos=0);

Description:

This function searches the pointer ‘d’ in the list and returns the found pointer (‘d’) if it is in

the list, and NULL pointer, otherwise. The second argument ‘last_pos’, which is usually NULL

pointer, indicates the position in the list from which searching should start and to which the

searching is performed at the last call of the function. Following example shows how to find all

the wanted elements in the list.

PtrList<Node> list;

Node *a = ... ;

Pix last_pos = 0;

while (list.isIn(a, &last_pos)) {

// perform some job here...

}

48

• T* PtrList<T>::sub(T* d);

Description:

This function subtracts a pointer in the list whose value is the same as that of ‘d’. It returns the

subtracted pointer in case of success, otherwise, it returns NULL pointer. It subtract one element

for each call. Therefore, to remove all the pointers same as ‘d’ in the list, you should repeat

calling the function until it returns NULL. Following example shows how to remove all the

pointers whose value is same as the of ‘a’.

PtrList<Node> list;

Node *a = ...;

while (list.sub(a));

• void PtrList<T>::replace(T *old, T *cur);

Description:

 This function replaces existing pointers which are the same as ‘old’ by ‘cur’. It replaces all the

matching elements in the list.

• T* PtrList<T>::item(int num);

Description:

 This function returns num’th element in the list. The indexing number starts from zero. If the

index is out of the length of the list, it returns NULL.

4.10 NodePtrList

Member Functions:

• Node* NodePtrList::node(int id);

Description:

This function searches a Node by its ID and returns the result. If no matching Node is found, it

returns NULL, otherwise, it returns the pointer to the found Node.

• Node* NodePtrList::isIn(const char *name);

Description:

This function searches for a Node by its name and returns the result. If no matching Node is

found, it returns NULL, otherwise, it returns the pointer to the found Node.

• void NodePtrList::dump(int level=0);

49

Description:

This function prints out the contents of the elements in the list. The argument ‘level’ has same

meaning in Node::print() function.

• void NodePtrList::recurCall(void (*func)(Node*, void*), void *flag=0);

Description:

 This function calls a function func transferred as the first argument such that the first argument

of func is each element in the list and the second argument of func is the flag transferred as the

second argument of the function. For details, refer to Subgraph::recurCall().

4.11 EdgePtrList

Member Functions:

• Edge* EdgePtrList::isIn(Node *pred, Node *succ, const char *name, int wildcmp=0,

const char *type=0, int kind=0);

Description:

This function searches for an Edge by Edge::pred, Edge::succ, Edge::name, Edge::type, and

Edge::getKind(). It returns pointer to the first found Edge in the list. This table summarizes the

relation between the arguments of the function and the contents of an Edge class. If the pointer

value of an argument is NULL, it does not compare the corresponding variable in Edge to find a

matching Edge. The fourth argument, wildcmp, is an option for comparing Edge::name. If this

value is 1, this function compares first N characters in name where N=strlen(name).

arguments pred succ name wildcmp type kind

matching

variable in Edge

Edge::pred Edge::succ Edge::name Edge::type Edge::getKind()

• int EdgePtrList::getNumData();

Description:

This function computes and returns the number of Edges whose kind(returned by

Edge::getKind()) is E_DATA.

• void EdgePtrList::find(EdgePtrList &dest, Node *pred, Node *succ, const char *name, int wildcmp=0,

const char *type=0, int kind);

50

Description:

This function performs almost same operation as Edge::isIn(). Even though Edge::isIn()

searches for only one matching Edge, this function searches for all the matching Edges and

stores them to the ‘dest’. For details on matching scheme, refer to EdgePtrList::isIn().

• void EdgePtrList::dump();

Description:

 This function prints out the contents of all the Edges in the list. It can be used for debugging.

4.12 Link

The Link and LinkPtrList classes are kind of parser classes which build internal data structure from a set

of string described in LISP form. The LIST format string is represented as a set of string wrapped around

by left and right parentheses. Following example shows an examples.

(test (a b c d) (+ a b c d))

The Link class corresponds to a leaf string (such as “test”), a leaf list (such as (a b c d)), or a

hierarchical list (such as (test (a b c d) (+ a b c d))). When a Link class parse the example string, it builds

internal data structure as shown in the figure.

In CDFG, attribute field is described in LISP format. Thus they are stored in LinkPtrList as

Node::_attrib, Edge::_attrib, and LengthType::_attrib.

Member Data:

• String Link::_val;

Description:

This variable contains the leaf string. It has no value if the Link class is not a leaf string but a

leaf list or a hierarchical list. If a Link is a list elements of the list is stored in the base class

LinkPtrList.

Link – “test” Link

Link-”a” Link-”b” Link-”c” Link-”d”

Link

Link

Link-”a” Link-”b” Link-”c” Link-”d”Link-”+”

51

• int Link::_no;

Description:

 This variable indicates the line number at which the string appears in the input file. It can be

used for printing error message.

Member Functions:

• int Link::isList();

Description:

This function returns 1 if the class is a list Link (a leaf list or a hierarchical list) Link.

Otherwise, it returns 0.

• int Link::compare(const char *str, int caseflag=0);

Description:

This function is applicable only when the class corresponds to a leaf string. This function

returns 1 if the string value stored in Link::_val is the same as the first argument ‘str’ .

Otherwise, it returns 0. The second argument ‘caseflag’ is an option for string comparison. If the

value of this argument is 1, it performs case-sensitive comparison.

• int Link::compare(Link *l, int caseflag=0);

Description:

This function is applicable only when the class corresponds to a leaf string. This function

returns 1 if the string value stored in Link::_val is the same as that of the link ‘l’ which is the

first argument of the function. Otherwise, it returns 0. The second argument ‘caseflag’ is an

option for string comparison. If the value of this argument is 1, it performs case-sensitive

comparison.

• int Link::compareHeader(const char *hdr, int caseflag=0);

Descriptoin:

 This function is applicable only when the class corresponds to a leaf list or a hierarchical list

where the first element in the list is a leaf string. We refer the first element of a list as a header

of the list. This function compares the value of the header with that of the first argument ‘hdr’. If

they have the same value, it returns 1. Otherwise, it returns 0. The second argument ‘caseflag’ is

an option for string comparison. If the value of this argument is 1, it performs case-sensitive

comparison.

52

• int Link::setNo(int n); int Link::getNo();

Description:

 These functions set and get the line number stored in Link::_no.

• char* Link::value();

Description:

This function is applicable only when the class contains a leaf string. It returns raw string

value stored in Link::_val.

• int Link::intValue();

Description:

This function is applicable only when the class contains a leaf string. It returns integer value

of the string stored in Link::_val.

• float Link::floatValue();

Description:

This function is applicable only when the class contains a leaf string. It returns float value of

the string stored in Link::_val.

• void Link::setValue(const char *fmt, ...);

Description:

This function is applicable only when the class corresponds to a leaf string. It set the string

value of Link::_val to the string value in ‘fmt’. The first argument ‘fmt’ can be described in the

same way as printf or scanf.

• int Link::length();

Description:

 This function returns the number of elements in the class. If the class is a list class it returns

the number of elements in the list. Otherwise (in case of leaf string), it returns 1. It counts the

number of elements in the same level. That is, it treat the element of list type as one element. It

does not step into the list type Link class and does not count the number of elements in the class.

• int Link::parse(FILE *fp, int lno=0);

Description:

53

This function builds a Link structure from an input text file. The first argument fp indicates a

file pointer to the input text file and the second one indicates the initial value of line number

which will be stored in Link::_no.

• int Link::parse(char *buf);

Description:

 This function builds a Link structure from a string. The first argument buf indicates an input

string described in LISP format.

• int Link::print(FILE *fp, int indent=0, int fmt=0);

Description:

This function prints out contents in the class to the file pointer fp. It can be used for

debugging.

• void Link::dump();

Description:

 This function prints out contents in the class to stdout. It can be used for debugging.

4.13 LinkPtrList

The LinkPtrList class is a base class of Link where it also contains the list of pointers to Link classes.

Member Functions:

• int LinkPtrList::parse(char *token, char *buf=0, FILE *fp=0, int lno=0);

Description:

 This function builds a Link class from an input string buf and token or from an input file fp.

The built Link class is stored as an element of this class. This function is internally called in

LinkPtrList::parseList(FILE*, int) , LinkPtrList::add(const char *,...) and Link::parse(char*).

• int LinkPtrList::parseList(FILE *fp, int lno=0);

Description:

This function builds a Link class from an input text file fp. The second argument lno is the

initial value of the line number stored in Link::_no.

• Link* LinkPtrList::findList(const char *hdr, int caseflag=0, Pix *start=0);

• Link* LinkPtrList::findList(Link *l, int caseflag=0, Pix *start=0);

54

Description:

These functions find a list type Link which matches the name of header stored in hdr and l-

>_val. The second argument caseflag is a string comparison option. If the value of the argument

is 1 it performs case-sensitive string comparison. The last argument start is the position in the

list from which searching starts or to which the position in the list at the last call is stored. You

can find all the matching Link classes in the list by calling the function repeatedly as shown in

the following example.

LinkPtrList list;

...

Pix last_pos = 0;

Link *cur;

while ((cur = list.findList(“cstep”, 0, &last_pos))) {

...

}

• Link* LinkPtrList::findValue(const char *value, int caseflag=0, Pix *start=0);

Description:

 This function finds a leaf string type Link class whose value (Link::_val) is the same as value.

The second argument caseflag is an option for string comparison. If the value of the argument is

1, it performs case-sensitive string comparison.

• int LinkPtrList::indexList(const char *hdr, int caseflag=0, int start=0);

• int LinkPtrList::indexList(Link *l, int caseflag=0, int start=0);

Description:

These functions search for a list type Link class whose header is the same as hdr or l->_val.

Then, it returns the index (the position in the list where the first element’s index is 0) of the Link

class in the list. The second argument caseflag is a string comparison option. If the value of the

argument is 1, it performs case-sensitive string comparison. The last argument is the position in

the list from which searching starts or to which the last searching is performed.

• int LinkPtrList::indexValue(const char *value, int caseflag=0, int start=0);

Description:

This function searches for a leaf string type Link class whose value (Link::_val) is the same

as the first argument: value. Then, it returns the index (the position in the list where the first

element’s index is 0) of the Link class in the list. The second argument caseflag is a string

55

comparison option. If the value of the argument is 1, it performs case-sensitive string

comparison. The last argument is the position in the list from which searching starts or to which

the last searching is performed.

• void LinkPtrList::recurCall(void (*func)(Link *l));

Description:

This function calls user defined function func such that each Link classes belonging to this

class is transferred as the argument to func. This function can be used to modify or perform

anything for each Link classes belonging to LinkPtrList class.

• int LinkPtrList::print(FILE *fp, int indent=0, int fmt=0);

• void LinkPtrList::dump();

Description:

These functions print out contents in this class. It can be used for debugging.

• void LinkPtrList::add(const char *fmt, ...);

Description:

This function first build a Link class from an input string in fmt and append the built class to

the list. The argument fmt is described in the same way as in well-known library function printf()

and scanf().

• Link* LinkPtrList::sub(char *hdr, int caseflag=0);

Description:

This function subtracts a list type Link class from the list where the header of the Link class is

the same as hdr. The second argument is a string comparison option where caseflag=1 indicates

the function performs case-sensitive string comparison. When a matching Link is found, it

returns the pointer to the matched (and subtracted) Link class.

• Link* LinkPtrList::getNext(Link *n);

Description:

 This function returns the pointer to the Link class which is next to the Link class n.

4.14 CDFG

Member Data:

• int CDFG::_kind;

56

Description:

This variable indicates the kind of the CDFG class, where CDFG kind is defined as

enum CDFG_KIND {

C_NORMAL=1, // Normal CDFG

C_HYPER=2, // edge is converted to hyper edge (multiple successors)

C_FLAT_MOD=4, // Loop conditional predicate is flattened into loop body

C_FLAT_LOOP=8, // Module class is flattened – not yet supported

};

Member Functions:

• void CDFG::convHyper(Subgraph *subg);

Description:

This function is internally called in CDFG::convGraph(). It converts each edge in the graph

in the form of hyper edge. Hyper edge is different from normal edge in that it has one or more

successors.

• void CDFG::convFlatLoop(Subgraph *subg);

Description:

This function is internally called in CDFG::convGraph(). It flatten the Subgraph of

conditional predicate (the Subgraph returned by Node::getCond()) into the loop body. Refer to

diffeq.vhd file for details.

• int CDFG::getKind();

Description:

This function returns the kind of the CDFG class.

• int CDFG::convGraph(int kind, int option=0);

Description:

This function converts the graph according to the first argument kind. The argument can be

one of values defined in CDFG_KIND enumeration type. The second argument is reserved for

the future use.

• void CDFG::print(int level=1, FILE *fp=stdout, int indent=0);

Description:

This function prints out the contents in the graph. The meaning of arguments is the same as in

Node::print().

57

• void CDFG::dump(const char *fname=0, int level=1);

Description:

This function print outs contents in the graph to the file whose name is fname. The second

argument level has the same meaning as in Node::print().

• virtual void parse(const char *fname);

Description:

This function builds internal data structure from an input file of fname.

• virtual Edge* newEdge();

• virtual Node* newNode();

• virtual Module* newModule();

• virtual Condition* newCondition();

Description:

These functions are used to allocate base classes (Edge, Node, Module, and Condition). They

are called while parsing an input CDFG file. They are defined as virtual such that user can

derive their own basic classes from the existing basic classes without modifying the parsing

routine. For details, refer to section 4.15.

• virtual void parseInit(Node *n);

• virtual void parseInit(Edge *e);

Description:

 These function are called during the parsing of an input CDFG file. User can redefine these

virtual functions by deriving CDFG class to initialize user’s own data structure during input

parsing procedure. For details, refer to section 4.15.

4.15 Adding User Defined Information To The Graph

While using CDFG parser, you may want to add your own information to each node, edge, etc. The

easiest way is to modify the definition of Node and Edge classes by editing cdfg.h. It is very error-prone

and out of the concept of OOP. Moreover, you should recompile whole the source code every time you

modify cdfg.h, which is very tedious. In this section we explain two ways how to add user defined

information to the graph without modifying the parser routine.

The first method is to derive your own basic classes from the existing basic classes. For example, if you

want to add an integer type variable named bind to each node, you can derive your own class named

MyNode from the basic class Node like this.

58

class MyNode: public Node {

public:

int bind; // your own data structure

public:

...

};

// This routine shows how to access your data

void test() {

MyCDFG graph(“test.cdfg”);

Subgraph *subg = graph.getSubg();

NodePtrList &nlist = *subg->getNodes();

for (Pix pi=nlist.first(); pi; nlist.next(pi)) {

MyNode *m = (MyNode*)nlist(pi);

printf(“%d\n”, m->bind);

}

}

However, the parser routine does not know that you derive your own basic class. You should also re-

define the function virtual void MyCDFG::newNode() as show in the following example.

class MyCDFG: public CDFG {

public:

virtual void newNode() { return new MyNode; }

virtual void parseInit(Node *n);

};

You can set the newly added bind variable during input parsing procedure. Assuming that the bind

information is attached in attribute field as shown in the following example, you can properly set the

your own variable by re-defining virtual void MyCDFG::parseInit(Node *n).

* This is a short segment of an input CDFG file, where bind information is attached in attribute field

node 1 + - - - (bind 1)

// This is a part of an C++ routine

void MyCDFG::parseInit(Node *n) {

 Link *bind_attrib = n->findAttrib(“bind”);

 if (!bind_attrib) return; // error

 MyNode *m = (MyNode*)n;

 m->bind = bind_attrib->item(1)->intValue();

}

59

You can also add your own data to the Edge class in the same way. In this case, you should re-define

virtual void MyCDFG::newEdge() and virtual void MyCDFG::parseInit(Edge *e).

The second method is to attach your own data structure to a Node and Edge classes by using Node::info

and Edge::info variable. For the same example, you can do the same job in the following way.

class MyCDFG::public CDFG {

public:

virtual void parseInit(Node *n);

};

void MyCDFG::parseInit(Node *n) {

Link *bind_attrib = n->findAttrib(“bind”);

if (!bind_attrib) return; // error

int *bind = new int;

*bind = bind_attrib->item(1)->intValue();

n->setInfo(bind);

}

void test() {

MyCDFG graph(“test.cdfg”);

Subgraph *subg = graph.getSubg();

NodePtrList &nlist = *subg->getNodes();

for (Pix pi=nlist.first(); pi; nlist.next(pi)) {

Node *n = nlist(pi);

int bind = *(int*)n->getInfo();

printf(“%d\n”, bind);

}

}

This method has problem in memory de-allocation. The allocated memory in void MyCDFG::parseInit()

is never de-allocated. To solve this problem, we need to derive your class as in the first method for safe

de-allocation like this.

class MyNode: public Node {

public:

...

~MyNode() { delete (int*)getInfo(); }

}

60

The two suggested methods seem to be simple. However, there still remain problems such as correct

memory de-allocation, copying class contents, and printing out class contents. The ExtCDFG gives an

easy way to add your own data structure to the graph without considering such problem.

4.16 ExtCDFG

As explained in the previous section, ExtCDFG class gives an easy way to add your own data structure

to the graph. The ExtCDFG class supports your defined data structure by way of Node::info and

Edge::info variable. To add your addition data to a Node class or Edge class, you have only to describe

code according to the following rules.

A. Attaching data structure to a node

0. If you don’t want to add your data structure to a node, just define NO_EXT_NODE before

including “extcdfg.h”.

1. Define your data structure name as ExtNodeInfo before including “extcdfg.h” file. In the case of

the example in section 4.15 you can define you data structure like this.

 struct ExtNodeInfo {

int bind;

 };

 #include “extcdfg.h”

2. If you want to change the way that a node is printed out, describe your functionality in

ExtNode::print() as shown in the following example. Otherwise, define NO_EXT_NODE_PRINT

before including “extcdfg.h”.

void ExtNode::print(int level, FILE *fp, int indent) {

Node::print(level, fp, indent|NORET_FLAG);

fprintf(fp, “(bind %d)\n”, NODEINFO(this)->bind);

}

3. If you want your data to be updated during input parsing, describe ExtCDFG::parseInit(Node *) in

the following way. Otherwise, define NO_PARSE_INIT before including “extcdfg.h”.

4. You can get a pointer to ExtNodeInfo by using macro NODEINFO(n) as shown in the following

example.

// print out binding info

Node *n = subg->node(1);

61

printf(“bind = %d\n”, NODEINFO(n)->bind);

B. Attaching data structure to an edge

0. If you don’t want to add your data structure to an edge, just define NO_EXT_EDGE before

including “extcdfg.h”.

1. Define your data structure name as ExtEdgeInfo before including “extcdfg.h” file.

 struct ExtEdgeInfo {

int bind;

 };

 #include “extcdfg.h”

2. If you want to change the way that an edge is printed out, describe your functionality in

ExtEdge::print() as shown in the following example. Otherwise, define NO_EXT_EDGE_PRINT

before including “extcdfg.h”.

void ExtEdge::print(FILE *fp, int indent) {

Edge::print(fp, indent | NORET_FLAG);

fprintf(fp, “(bind %d)\n”, EDGEINFO(this)->bind);

}

3. If you want your data to be updated during input parsing, describe ExtCDFG::parseInit(Edge *) in

the following way. Otherwise, define NO_PARSE_INIT before including “extcdfg.h”.

4. You can get a pointer to ExtEdgeInfo by using macro EDGEINFO(e) as shown in the following

example.

// print out binding info

Edge *e = ...;

printf(“bind = %d\n”, EDGEINFO(e)->bind);

4.17 Example

4.17.1 Node traversal

Following example routine shows how to traverse the whole graph and perform proper action for each

node or edge. Since the CDFG class has hierarchical structure, you’d better perform a job for each sub-

graph and perform recursion for the child sub-graphs.

// This example traverses all the Subgraph in the graph and prints out the contents

62

// The functionality is the similar to CDFG::print()
void test(Subgraph *subg) {

NodePtrList &nlist = *subg->getNodes();
NodePtrList &elist = *subg->getEdges();

// first print out edge-list
for (Pix pi=elist.first(); pi; elist.next(pi)) {

Edge *e = elist(pi);
e->dump();

}
for (Pix pi=nlist.first(); pi; nlist.next(pi)) {

Node *n = nlist(pi);
n->dump(0);

}

// perform recursion for child subgraphs
for (Pix pi=nlist.first(); pi; nlist.next(pi)) {

Node *n = nlist(pi);
// you have two ways for scanning all the subgraphs
// The first method
switch (n->getType()) {

case N_COND:
{

test(n->getCond());
int num_subg = n->getNumSubg();
for (int i=0; i < num_subg; i++) {

test(n->getSubg(i));
}
break;

}
case N_MOD:

test(n->getSubg());
break;

case N_ITER:
test(n->getCond());
test(n->getSubg());
break;

}

// The second method
if (n->getCond()) test(n->getCond());
int num_subg = n->getNumSubg();
for (int i= -1; i < num_subg; i++) { // note that index start from –1 (refer to Cond::getSubg());

if (n->getSubg(i)) test(n->getSubg(i));
}

}
}

void main()
{

CDFG graph(“test.cdfg”);
test(graph.getSubg());

}

4.17.2 ASAP scheduling

/***

* Title : asap.cc

* Desc : ASAP example routine

* Author: Jinhwan Jeon

* Date : 1999.12.18

**/

63

#define NO_EXT_EDGE

#define NO_EXT_SUBG

#define NO_PARSE_INIT

#define NO_EXT_NODE_PRINT

struct ExtNodeInfo {

int ts;

};

#include "extcdfg.h"

#define CHKMARK(n, m) ((n)->getMark() & (m))

#define SETMARK(n, m) (n)->setMark((n)->getMark() | (m))

#define CLRMARK(n, m) (n)->setMark((n)->getMark() & ~(m))

void UpdateList(NodePtrList &list, Node *n, int mark)

{

 EdgePtrList &succs = *n->getSuccs();

 for (Pix pi=succs.first(); pi; succs.next(pi)) {

 Edge *se = succs(pi);

 Node *sn = (Node*)se->getSucc();

 EdgePtrList &preds = *sn->getPreds();

 int ready_flag = 1;

 if (mark && CHKMARK(sn, mark)) continue;

 for (Pix pj=preds.first(); pj; preds.next(pj)) {

 Node *pn = (Node*)preds(pj)->getPred();

 if (mark && CHKMARK(pn, mark) == 0) {

 ready_flag =0;

 break;

 }

 }

 if (ready_flag && !list.isIn(sn)) {

 list.append(sn);

}

}

}

void ASAP(Subgraph *subg, int ts)

{

if (!subg) return;

NodePtrList &nlist = *subg->getNodes();

Node *source = nlist.node(0);

NodePtrList stk;

// init schedule info

for (Pix pi=nlist.first(); pi; nlist.next(pi)) {

Node *cur = nlist(pi);

cur->setMark(0);

cur->setHwSpeed(1); // hardware-speed

}

SETMARK(source, 1);

NODEINFO(source)->ts = ts;

64

UpdateList(stk, source, 1);

while (!stk.empty()) {

Node *cur = stk.remove_front();

int tend = ts;

EdgePtrList &preds = *cur->getPreds();

for (Pix pi=preds.first(); pi; preds.next(pi)) {

Node *pn = preds(pi)->getPred();

int tend_pn = NODEINFO(pn)->ts + pn->getHwSpeed();

if (tend_pn > tend) tend = tend_pn;

}

NODEINFO(cur)->ts = tend;

switch (cur->getType()) {

case N_MOD:

{

ASAP(cur->getSubg(), tend);

int delay = NODEINFO(cur->getSubg()->node(-1))->ts - tend;

cur->setHwSpeed(delay);

break;

}

case N_ITER:

case N_COND:

{

ASAP(cur->getCond(), tend);

int delay1 = NODEINFO(cur->getCond()->node(-1))->ts - tend;

int delay2 = 0;

for (int i=cur->getNumSubg()-1; i>=-1; i--) {

Subgraph *subgi = cur->getSubg(i);

if (!subgi)continue;

ASAP(subgi, tend+delay1);

int d = NODEINFO(subgi->node(-1))->ts - tend - delay1;

if (d > delay2) delay2 = d;

}

cur->setHwSpeed(delay1+delay2);

break;

}

}

SETMARK(cur, 1);

UpdateList(stk, cur, 1);

}

}

void main(int argc, char **argv)

{

if (argc < 2) return;

ExtCDFG graph;

graph.parse(argv[1]);

ASAP(graph.getSubg(), 0);

}

65

4.18 Compile and Link

 When compiling your program with our CDFG tool, you should include “cdfg.h” in your source code

where the file is located in $CDFG_HOME/include directory. You should add the path as an include path

by using –I option of C-complier. When linking, you should link your problem with

$CDFG_HOME/lib/cdfg.a.

