Technical Report No. SNU-EE-TR-1997-5

VHDL Developer's Toolkit 2.6
User's Guide & Reference

Sanghun Park
Kiyoung Choi

September 1997

School of Electrical Engineering
Seoul National University

Copyright & 1997 by Sanghun Park and Kiyoung Choi

Haedong Digital Library
Room 312, Building 301, Seoul Nationa University
Shinlim-dong, Kwanak-gu, Seoul 151-742, Korea
Tel: (02)880-1787 Fax: (02)882-4656
http://haedong.snu.ac.kr

Abstract

This report presents VDT (VHDL Developer's Toolkit) which has been developed to support fast and easy
development and integration of VHDL application tools. VDT is a software package which is developed using
object-oriented programming language. The toolkit provides a library of versatile routines and several utilities.
As basic utilities, it provides a VHDL analyzer and a VHDL generator. The VHDL analyzer parses the given
VHDL code and constructs the intermediate form. The VHDL generator regenerates the corresponding VHDL
code from the given intermediate form. The toolkit also provides a procedura interface through which
application tools can efficiently manipulate VHDL intermediate forms. Procedural interface is a library of
versatile routines which are used to handle the intermediate form. The toolkit is based on a data model which has
been designed to represent the basic structure of the VHDL intermediate form. The data model supports the full
set of |IEEE Std 1076-1987.

Table of Contents

1 Introduction

2 Structure of VDT

3 Data Model

3.1 Abstract VDT data model

3.2 Data structure of VDT objects
3.3 Classification of basic objects
3.4 Relationship checking

3.5 Object-oriented Programming

4 Intermediate Form Representation
4.1 Architecture body
4.2 Process Statement

4.3 Signal Assignment Statement

5 Procedural Interface

5.1 Library Object Management
5.1.1 Open/Close Routine
5.1.2 Add/Sub/Gen Routine
5.1.3 Get Routine
5.1.4 Search Routine

£ 2

th th th th th
M W W W™ W

I+

5.1.5 Dump Routine

5.2 Design Unit Management
5.2.1 Load/Save Routine
5.2.2 Create Routine
5.2.3 Get Routine
5.2.4 Dump Routine
5.2.5 Generate Routine
5.2.6 Check Routine

5.3 Library Unit Management
5.3.1 Set/Get Routine
5.3.2 Add/Sub/Gen Routine
5.3.3 Get routine
5.3.4 Search Routine
5.3.5 Dump Routine
5.3.6 Generate Routine
5.3.7 Check Routine

5.3.8 Characterize Routine

6 Characterize Routines

6.1 Classidentifying routines

6.2 Group identifying routines

6.3 Property getting routines

7 VDT Utilities

7.1VHDL Analyzer

7.2 VHDL Code Generator

7.3 VHDL Static Semantic Checker

7.4 Design Library Browser

7.5 Intermediate Form Dumper

£ 3

th th th th th th th
W W W W B N
+ .

th th th th th th th th th
th th W h W W W W W

thH
tH
N

tE£=2
£EE~

tE1

£f2
£f2
£f2
£f3
£f3

£f3

7.6 |FtoBLIF Trandator

7.7 BDNET to VHDL Translator

8 Appendix A. VDT Object Definition

9 Appendix B. Naming Rule

10 Appendix C. FSM Synthesis from VHDL Description

11 Appendix D. VDT Installation

N

£R°

£R -

EEES

tEEp

1 A

1 Introduction

Since 1987, when VHDL (VHSIC Hardware Description Language) became the formal international standard[1],
the language has been gaining its popularity due to the widespread top-down design methodology and the
increasing need for ASICs (Application Specific Integrated Circuits) [2,3,4]. Although much effort has been put
for the development of VHDL libraries and tools [5,6,7], the increasing design size and complexity are still
pushing the tool developers for more and better libraries and tools. However, it is not an easy task to develop
tools that support the broad range of VHDL's descriptive capability while maintaining good performance. The
development takes along time and much effort because every tool needs to be able to analyze VHDL descriptions,

deal with complex intermediate data, and/or give much consideration to obtaining efficient data access.

The development of VDT (VHDL Developer's Toolkit) aims at providing a set of tools and an integrated
environment to tool-devel opers so that they can speed up the development and integration of VHDL -related tools.
The basic concept of VDT is similar to that of other existing systems such as the IBM VHDL Design System [8]
and CLSI's VTIP(VHDL Tool Integration Platform) [9]. However, the interna structure of the existing systems
are unclear and complex, and therefore, the systems are difficult to use. VDT has been built on a data model
which is relatively simple but still maintains the full VHDL descriptive power. VDT aso provides a clear

procedural interface between applications and the intermediate form.

This report is structured as follows. The next section presents the structural overview of VDT. Section 3 explains
the design of the data model that forms the basis for VDT. Section 4 explains the implementation aspect on data
structure. Section 5 explains the intermediate form representation for various VHDL constructs. Section 6
explains the procedural interface in detail. Section 7 presents the method by which VDT utilities are developed
and integrated into VDT.

£Eu

2 Structure of VDT

VDT is a software package which is developed using the C++ programming language. This package includes a
library of versatile routines and several basic tools which enable easy and quick development of VHDL
application tools. The core module of the toolkit is Pl (Procedural Interface) which is a library through which
application tools can efficiently manipulate VHDL intermediate forms. As basic tools provided by the toolkit,
there is the VHDL analyzer, VHDL generator, library browser, and so on. The toolkit is based on a data model
which has been designed to represent the basic structure of the VHDL intermediate form. The data model
supports the full set of IEEE Std 1076-1987.

Text
Editor ¢ »| VHDL Source

1

VHDL 1 l
Graphlcal __| VHDL VHDL Application tools
Environment Analyzer Generator Simulators, Synthesizers, ...

_________ B T e | T
! Dump ' Generate ! Semantic Check! Error Handle
Routines | Routines | Routines | Routines ' Routines
Primitive Layer

[Intermediate Form] Disk

Figure 1. Structure of VHDL Developer's Toolkit

Figure 1 shows how the basic tools and utilities are configured together with other application tools, such as
simulators and synthesizers. Pl consists of two stacked layers. The primitive layer contains routines for primitive
operations on library objects, design objects, and basic objects. These three kinds of objects form a hierarchy in
the intermediate form. The application tools call on these routines to access the intermediate form. The VHDL
analyzer, for example, analyzes a VHDL source and construct the intermediate form by calling on various
routinesin Pl. Then it calls for the semantic check routines to see if the VHDL source has correct semantics. If it
passes the semantic checking, the intermediate form is stored onto the disk in the form of well-arranged binary
data. Because the basic routines, such as building and storing an intermediate form, are provided by PI, the
analyzer could be developed quickly and easily. With thistoolkit, devel oping application tools such as simulators
are easy because all the routines for manipulating the intermediate form and even the analyzer are already there
ready to be used.

£1

Because the intermediate form preserves all the semantics implied by the original VHDL code, any application
tool can use the same intermediate form as its inputs. VHDL code can be regenerated from a given intermediate
form by the VHDL generator. The generated VHDL code may look different from the origina code, but must

have the same semantics.

3 Data M odel
Because of the wide range of descriptive capability of VHDL, high complexity of the intermediate form is

unavoidable. Accordingly, the manipulation of the VHDL intermediate form is a very complicated and error-
prone process. However, we can alleviate the problem by designing and utilizing a data model which is a
notation for representing the structure of intermediate forms. The data model can be used by both the Pl
developers and the application tool developers. The Pl developers write procedures such that the procedures can
manipulate the intermediate forms according to the data model. The application tool developers use the data

model to understand how the intermediate form is structured and how it is accessed through PI’ s procedures.

In designing the data model, the following aspects are considered:

® The data model must be designed such that the full VHDL descriptive capability is kept intact in the
intermediate form representation. No loss of information is alowed during the analysis process.

® The data model partialy supports the VHDL semantics. Full support would cause too much overhead.
Therefore, it is possible to build an intermediate form that is semantically incorrect but conforms to the data
model. Detecting such an error is the job of the Semantic Checker module of PI.

® Efficiency (memory space and speed) is one of the most important factors that must be considered in
designing the data model. The efficiency in manipulating intermediate forms affects the performance of
every application tool and must be considered in the data model design phase.

® Application tool developers are expected to use the data model as a‘map’ for accessing the intermediate
form. Therefore, the data model must be as simple as possible so that the user can understand the structure

of the intermediate form without too much difficulty.

31 Abstract VDT data model

The top-most VHDL construct is a design library. A design library is a host dependent storage facility for the
intermediate forms of the analyzed design units. The second highest construct is a design unit. A design unit can
be analyzed independently, and an intermediate form is constructed. The intermediate form can be stored in a
design library. Usually, a design library is implemented as a directory of file system, whereas a design unit is
implemented as a file stored in the directory. A design unit is composed of a library unit and a context clause.
There are five kinds of VHDL constructs called library units. entity declaration, package declaration,
configuration declaration, architecture body, and package body. The context clause proves the context in which a
library unit is analyzed. As the lowest VHDL constructs, there are signal declaration, process statement, case

statement, configuration specification, and so on. A design unit is composed of these constructs.

Lib

| designs path
Design |«
map_table top Lib

Basic Cloud
---------- N

.
LLL T
S

;
N

.

)

LLL L]
B
\

\

\

Figure 2. Abstract VDT data model.

Figure 2 shows an abstraction of VDT data model. VDT data model defines the general structure of intermediate
forms. An intermediate form is composed of many kinds of objects which we call VDT objects. All VHDL
constructs are described by VDT objects in an intermediate form representation. For each VDT object, thereis a
corresponding VHDL construct. An intermediate form can be modeled as a directed graph, where vertices
represent VDT objects and edges represent the relationships.

VDT objects can be classified into three kinds; lib object, design object, and basic abject. Lib object represents a
design library, design object represents a design unit, and basic objects represents the rest of VHDL constructs.
For instance, in an intermediate form representation, an architecture body is represented by an Arch_body object
and atype declaration is described by a Type object. The Arch_body objects and Type objects are basic objects. A
basic cloud is composed of only basic objects and relationships among these objects. Actually, the behavior of a
circuit is described by a basic cloud. On the other hand, lib objects and design objects contain only the
information on the environment. In the programmer’ s view, the design object can be regarded as a container of

basic objects. Similarly, alib object can be regarded as a container of design object.

3.2 Relationships among basic objects
A relationship associates an object with other objects. For example, an object corresponding to a signal of bit
type has a relationship to the bit type object. A relationship from an object can be one-to-one or one-to-many

depending on how many objects are associated with the object.

—|entity| |arch_body| |package| |pack_body| |configuration
[— |

wy

ALAAS
O _El use |4_| context |_>| Iibrary|

AA

»i
»i
»i

ST

(declaration

>
>
>
—

A

expression

attribute

component

comment

=pattr_spec]——
B

Figure 3. Relationships among VDT basic objects.

Figure 3 shows the detailed data model diagram of VDT basic objects and relationships among these objects. In
these figures, a rectangular box represents an object type whereas an arc-box represents a class. Thin arrows

represent one-to-one relationships whereas thick arrows represent one-to-many relationships.

Relationships across design units, those which are associations among Basic objects that are in different Basic
clouds, are called external references. In Figure 2, the relationship from the Arch_body object to the Entity object
is an external reference. When design object is stored onto the disk as afile, al basic objects contained within
the corresponding basic cloud are also stored. However, the external references are broken during the storing of a
design unit. The externa references are restored when the design object and the basic cloud are loaded. For this

purpose, the information on the external references are kept in the basic cloud.

£E”°

3.2 Data structure of VDT objects

Given the data model, memory usage and performance are the key criteria in designing the data structure. Each
object type in the data model is implemented by the class construct of the C++ programming language. Each

attribute and relationship isimplemented by a private member of the class. The access routines of these fields are

implemented by member functions.

The data structure of VDT objects has many storage fields to capture a given VHDL description. These storage
fields can be classified into two categories: attribute fields and relationship fields. The relationship fields store
the pointer of a related object, which describes the relationship with the object. For instance, Signal object has a
relationship field "type" to point a Type object that corresponds to a type of the signal. On the other hand, the
attribute fields store the properties of object itself and corresponding VHDL construct, such as object sequence

number, code line number, identifier, and so on.

port (A :in bit;
B,C : out bit
)i

end Circuit;

architecture Behav of Circuit is
constant High: bit:=1 ~

begin
B <= A and High;
C<=notA;
end Behav;
Circuit
High
A

i

ports : 161 162 163
subprograns :

VAttribute '
- object _type : entity |
i d_nunber : 160 '

: l'i ne_number : 1 .
i flag 0 !
' name © Gircuit ,
' synbol s © (161, A) !
! (162, B) (163, 0) ,
1 Rel ationship !
' scope : '
1 cont ext 0 '
' generics : '
: I
1 1
1 1
1 1

L Attribute !

obj ect _type : arch_body .
N id_nunber . 170 !
i line_nunber : 8 '
' flag : 0 1
1 nane . Behav .
, synbol s © (171, High)
1 Rel at i onshi p '
| scope : I
1 context : 0 .
. entity : 160 !
1 subprograms : ,
\ constants : 171 !
! 1
! 1
1

Figure 4. Data structure of VDT object.

Figure 4 shows the contents of two objects corresponding to entity declaration and architecture body. The
architecture body has an identifier "Behav". This identifier is captured by the attribute field "name" of
Arch body object. The architecture body is associated with an entity declaration called "Circuit". This

relationship is captured by the relationship field "entity".

£ £+

Actudly, the attribute values of VDT objects must be of type, such as string, integer, and user defined
enumeration. All kinds of basic objects have some attribute fields in common, such as "object_type",
"id_number", "line_number", and so on. The field "object_type" represents the kind of basic object. The field
"id_number" represents the sequence number of basic object and identifies a unique basic object within a design
unit. The field "line_number" represents the line number on which the corresponding VHDL construct appears
in VHDL file.

There are two kinds of relationship, one-to-one relationship and one-to-many relationship. The one-to-one
relationship field can point only at one object. The one-to-many relationship field can point at many objects. The
naming convention distinguishes the two names of the one-to-one relationship field and one-to-many
relationship field. If the name of arelationship field is an identifier with the ending 's, then the field is for one-
to-many relationship. Otherwise, the field is for one-to-one relationship. The values of relationship fields must be
the pointer of VDT object. When the contents of VDT objects are stored on disk or are printed on screen, the

pointer value is replaced by the sequence number "id_number" of the pointed object.

VDT naming rule makes the convention on abbreviated names of VDT objects and the storage fields of these
objects. For instances, Arch_body represents an object corresponding to architecture body, the relationship field
"constants' of Arch_body object represents the list of constants declared within the architecture body.

3.3 Classification of basic abjects
For each basic objects, there is a unique data structure. Basic objects can be distinguished by many kinds, as
many as the kinds of VHDL constructs. For instances, a Signal object describes a signal declaration, a Conf_spec

object describes a configuration specification in an intermediate form representation.

£E2

O _arch _body O_operator
O_configuration OP_and OP ge OP_not OP_sdlected
O_entity OP_or OP_add OP_exp OP dlice
O _package OP_nand OP_sub OP_abs OP_indexed
OP_nor OP_concat OP_aggregate OP_attribute
e} body |) (__aggreg)
O—Z‘?Ck - OP _xor OP_plus OP_func_cdll OP_range
 dles OP &g OP minus OP_qudified OP _to
O_attribute OP_ne OP_mul OP_type_conv OP_downto
O _block_conf OP It OP _div OP _allocator OP_arrow
O_comment OP_le OP_mod OP_physical OP_choice
O_component OP_gt OP_rem
O_comp_conf
O_congtant
O_context O_statement
O file - - a
. ~_conc_assert _assert ST_case alt
ol I_bray ST_conc_proc_cdll ST_wait ST_loop
O_signd ST_comp_inst ST proc cdl ST next
O _use ST _generate ST_sig assign ST _exit
O variddle ST_sal_sig assign ST var_assign ST return
O attr_spec ST_sd_wave ST_if ST_null
) ST_cond_sig_assign ST_if_alt
O—Cpnf— I ST _cond wave ST case
O _disc_spec
O_type
O literd O_subprogram
: T subtype T_float T_field
L_integer SP_procedure T incomplete T _physical T_access
t_‘;'t‘??f g’;—fp“;;—lgﬁdy T enum Tunit T file
—Shng. —runct T_element T array
t_gltﬁstnng SP_func_body T integer T record
_nu

Figure 5. Basic object kinds.

Figure 5 shows the kinds of basic objects. Basic objects are identified by attribute field "object_type" whose type
is of predefined enumeration type. The enumeration type named object_type has many elements shown in the
above figure. O_arch body is the object type value of Arch body object which is a kind of Basic object
corresponding to architecture body. Simply, Arch_body object is called O_arch_body without confusion.

Severa basic objects are divided more precisely. The related objects are O _literal, O_operator, O_statement,
O_subprogram, and O_type. O_literal is classified in more detail into five kinds: L_integer, L_float, L_string,
L_hit_string, and L_null. L_string isakind of Literal objects, and corresponds to string_literal. Simply, a Literal

object having "L_string" kind is called L_string without confusion.
34 Relationship checking

An individual intermediate form is constructed by analysis of a VHDL description that corresponds to a design
unit. VHDL description is captured by VDT objects and the relationships among these objects in an intermediate

£ES

form representation.
An intermediate form is composed of VDT objects and the relationships among these objects. The intermediate
form representation can be regarded as a directed graph, where vertexes represent VDT objects, and edges

represent the relationships among these objects.

A+BadC=1

operator
kind=and

T

operator operator
kind = plus kind = equal

ZEDNERVERN

signal signal signal literal
name=“A” name="“B” name="“C’ value=1

Figure 6. Representation of intermediate form

Figure 6 shows an example of intermediate form representation which corresponds to a VHDL expression. The
intermediate form is composed of seven VDT objects and six relationships. The "and" operator is represented by
OP_and, and "+", "=" operators are by OP_plus, OP_equal, respectively. The operands "A", "B", "C" are
represented by O_signal, and the operand "1" is represented by L_integer.

The binary operators have two relationships that indicate the two operands respectively. In the above figure, the

two relationships are represented by two directed arrows from an operator to the operands.

An intermediate form constructed by analysis of a design unit contains all syntax and semantics of a given
VHDL description. If a given VHDL code has illega syntax and semantics, the constructed intermediate form
may contain theseillegal syntax and semantics. For instance, asignal declaration creates asignal of the specified
type. The corresponding O_signal has a relationship with O_type corresponding to the specified type. The object
allowed to be linked with O_signal for this relationship are only O_type or Basic object regarded to a type.

The relationship checking does check if the relationship being made is legal by definition of VDT data model.
Namely, the relationships defined by VDT data model restrict illegal intermediate form containing illegal syntax
and semantics. But al illegal syntax and semantics cannot be restricted by these relationship definitions. So, an

intermediate form may contain some illegal syntax and semantics. These remained illegalities can be removed by

S

the analyzer and semantic checker.

35 Object-oriented Programming

VDT isdeveloped by using C++ programming language][10], which is an object-oriented programming language.
Object-oriented technique has three powerful features: data abstraction, inheritance, and polymorphism. VDT
data model and Pl library are implemented by fully using these features.

Data abstraction is provided by a class construct in C++ language. Each VDT object is implemented to a unique
class. A class consists of a data structure and member functions that handle the data structure. Only the member
functions of a class can access the associated data structure. A class construct provides protection mechanism

that protects the accessing of a corresponding data structure from outside of a class.

Inheritance is accomplished by class hierarchy in C++ language. All classes corresponding to Basic objects are
derived from one base class. All derived classes are cast to this base class, and inherit the storage fields and
member functions of the base class. This inheritance mechanism enables code sharing among different classes.
The code sharing is accomplished by defining a class with common storage fields and access routines, and by

inheriting this class.

Polymorphism is accomplished by virtual function in C++ language. Each Basic object is implemented to a
unique class that may have some common members to other class by inheriting from the same classes. A given
Basic object may not have some member functions. A calling of these member functions for this object will cause

error.

£ £

4 Intermediate Form Representation

In the programmer’ s view, there are containment relation among VHDL constructs. Design library is a VHDL
construct larger than design unit and contains many design units. Design unit is a construct larger than entity
declaration and contains many of these constructs. Entity declaration is a construct larger than signal declaration,

constant declaration, etc.

41 Architecture body

Figure 7 shows the intermediate form representation corresponding to an architecture body. A process statement
appears in architecture body. The architecture body and process statement are represented by Arch _body object
named "behav" and Statement object, respectively. O arch body is Arch body object, and ST process is a
Statement object attributed with ST _process kind. O_arch body has a connection with ST_process, which

represents the relation between architecture body and process statement.

-- architecture body --
architecture behav of aluis
begin

process

begin ,

. Arch_body .

end process; name = “behav” \

end behav; / A
. wnc—amtsm Entity
/ 13 | name=“au’
Statement

kind = ST_process ~

Figure 7. Intermediate form representation for architecture

body.

The data structure of Arch_body object has a attribute field named "name" which is of a string type and is
written as "behav" in this example. And, it has a relationship field named "entity" which is of a pointer type and
iswritten as the address of Entity object. It also has arelationship field named "conc_stmts' which is of a pointer
array type. In this example, one ST_process is pointed by the "conc_stmts' field of Arch_body object. In addition,
the data structure of Arch_body object has many fields.

4.2 Process Statement

In process statement, sensitivity list can appear. Sensitivity list indicates the signals that activate the process
statement during simulation. ST_process has one-to-many relationship with these signals, and the objects related
to "sengitivities' relationship of ST_process can be O_signa or objects that can be regarded to signal such as a

£EES

signal attribute and a slice name of asignal. If it triesto make a relation with no signal object, error message will

be reported by relationship checking routine of PI.

-- process statement --
process (a, b)
begin
s<=a-b; Statement
kind = ST_process

end process; sensitivities
sequ_stmts

S oyt

Signa

name="“b"

Statement
kind = ST_sig_assign

Signa

name="a’

Figure 8. Intermediate form representation of process

statement.

Figure 8 shows the intermediate form representation corresponding to a process statement which contains many
sensitivities and many sequential statements. The process statement is represented by ST _process. ST_process
has sequ_stmts and sensitivities fields to describe the relations with sequentia statements and sensitivities,

respectively.

The containment relation is implemented to the directed pointer. The ST_process has the storage field named
"sequ_stmts' and "sensitivities' of a pointer array type. The "sequ_stmts' field points the objects corresponding
to sequential statements contained in this process statement. Actually, the pointer array is a single-linked list
which enables easy append, deletion, and sequential searching.

4.3 Signal Assignment Statement

Figure 9 shows the intermediate form representation corresponding to signal assignment statement. A signal
assignment statement is described by a ST _sig assign in intermediate form. ST_sig_assign has "target" and
"waveforms' relationships. The "target" relationship is 1:1 relationship and relates to an object corresponding to
target. The "waveforms' relationship is 1:m relationship and relates to objects corresponding to waveform

element list.

££E -

-- signal assignment statement --
s<=a+ b after 3ms;

Statement
kind = ST_sig_assign|

Signa

name="“s’

/lar/get W‘?

Statement

kind = ST_waveform

/Je_ expr ti@‘p\

Operator

kind = OP_add

Operator

kind = OP_physica

Aract unt

Signa

name="“a’

Variable
name =“b"

Litera
value=3

Type
kind = T_unit

Figure 9. Intermediate form representation of signal

The syntax of waveform is "value expression AFTER time expression”. ST _waveform is the Basic object
corresponding to the waveform. ST_waveform has two relationships: "value_expr" and "time_expr" relationship.
The "vaue _expr" relationship describes the relation to the value expression and points an object corresponding

to an expression. The "time_expr" relationship describes its relation to the time expression, and points an object

corresponding to an expression.

£ £

assignment statement.

5 Procedural Interface

The core module of this toolkit is Pl, which is a library of versatile routines that handle the intermediate form.
The intermediate form is protected to be accessed by a pointer. The user can handle the intermediate form only
through the routines provided by PI. PI library can be divided to three modules according to the related VDT
object, design library manager, design unit manager, and library unit manager. According to library hierarchy,
Pl can be divided into two layers: primitive layer and application layer. The routines within primitive layer
access directly the data structure of VDT object. On the other hand, the routines within application layer can not
access the internal data of VDT object, but do more complex processing by using the routines within primitive

layer.

The data structures are defined for each VDT object. And the access routines of an object are defined mutually
for each field. The routines included in Pl range up to several hundreds. It is hard to remember all the names of
routines. The name of an access routine is a combined one with the name of arelated storage field. This naming

convention of routines enables a fast and easy recognition of the function of aroutine.

PI library can be divided to three modules according to the related VDT object: library object manager, design
object manager, and basic object manager. The module of library object management handles lib object which
corresponds to the largest VHDL construct called design library. Design library is the storing location of design
units and actually associated with a directory of file system. This module defines the data structure of lib object,
and contains a few routines handling this object. The module of design object management handles design object
which corresponds to the second largest VHDL construct called design unit. Design unit is an atomic unit which
can be analyzed independently to other units. An intermediate form constructed by analysis of a design unit is
stored as afile in a given directory. This module defines the data structure of design object, and contains a few
routines handling this object. The module of basic object management handles basic object. All VHDL constructs
except design unit and design library are represented by basic object in an intermediate form. Basic object is
classified into many kinds. This module defines the data structures of each Basic object, and contains numerous
routines handling these objects. The size of this module is very much larger than other modules, and most Pl

libraries are occupied by this module.

All routines in PI library can be classified into two categories: access routine and processing routine. The access
routines read and write directly the data structure of VDT object. On the other hand, the processing routines just
process the information of VDT object by using the access routines. The access routines are located in the
primitive layer of Pl, and the processing routines are located in a higher layer caled the application layer of PI.
The access routines can be classified into three categories according to related storage field of the data structure:
attribute getting routine, 1:1 relationship making routine, and 1:m relationship making routine. The attribute
getting routine reads a given storage field which is regarded as an attribute field. The 1:1 relationship making
routine gets the object linked to a related 1:1 relationship field, and links a given object to that field. The 1:m

£E?

relationship making routine gets the object list linked to arelated 1:m relationship field, and links a given object
to that field.

51 Library Object Management
This module has a few access routines and processing routines. As access routines, there are "open/close”
routines, "add/sub/gen" routines, and "get" routine. As processing routines, there are "search" and "dump"

routines.

The creation of a new design library is accomplished by just assigning the logical name of design library to a
directory path-name of UNIX file system. The configuration is written to a specia file named
"$VDT/etc/. VDTRC". Figure 10 shows the contents of this configuration file. This file configures basically the

design library named "STD" and "WORK", and includes other configuration files named "~/.vdtrc" and ".vdtrc".

-- contents of start-up file --
Library STD $VDT/etc/std
Library WORK .

Include ~/.vdtrc

Include ./.vdtrc

static S List<Lib*> gLib::_libs;

Lib Lib Lib

L—ieee work b——std

Figure 10. Create adesign library.

All tools using VDT initialy read the configuration file and automatically build the list of Lib objects. This list
exists while a program is running and can be increased and decreased. If there is any error in a configuration file,

aprogram cannot be run. The above is the syntax of design library configuration.

® Synopsis of new design library creation.
LIBRARY strl str2
char* strl; -- logical design library name.

char* str2; -- path-name of a directory.

In default, there are three configuration files which have the precedence. If there are one more configuration for

the same design library with different path-name, then the last configuration overrides.

£B°

5.1.1 Open/Close Routine
A Lib object represents a design library and captures the information of a directory corresponding to the design
library such as path-name of the directory, the count of design units within the design library, and so on. Figure

11 shows the C++ code of open routine and the result of that running for "ieee" design library.

typedef Lib* lid;
gLibgl;
lid lib = gl.open(“ieee”);

—

lib D e
_desig_n:s N \
i | =

Figure 11. Open design library.

The type of "gLib" is predefined by PI library as a list of Lib objects. The type of "lid" is also predefined as a
pointer of Lib object. The open routine is accomplished to a variable "gl" of "gLib" type with logical design
library name "ieee". As a result, the variable "lib" gets the pointer of Lib object named "ieee" which is found in
the list of Lib objects. During the processing of open routine, the files within a directory which are of VDT
intermediate forms are collected and built to Design objects.

® Synopsis of open routine.
#include "libraryMan.h"
lid gl.open(str)
gLibgl; -- variable of gLib type.
char* str; -- logical design library name.
Description
a Find aLib object for agiven logical library name in the list of Lib objects.
b. Open adirectory corresponding to the Lib object.
c. Collect fileswhich are the saved images of VDT intermediate form.
d. Create a Design object for each file.
e. Append each created Design object to Lib object.
f. Close the directory.
0. Return the pointer of the found Lib object. If not found, return Null pointer.
cf) If a Lib object is aready opened, the repeated running of open routine for the same Lib object will not

accomplished. It saves the computing time and guarantees only one existence of the same Lib object in the

£B+

system.

® Synopsis of closeroutine.
#include "libraryMan.h"
lid gl.close(str)
gLibgl; --variableof gLib type.
char* str; -- logical design library name.
Description
a. Find the Lib object for agiven logical design library name.
b. Save each Design object to afile in the form of well-arranged binary data.
c. Locate the file in the directory corresponding to the Lib object.
d. Return the pointer of Lib object. If error occurs, return Null pointer.

cf) After the running of close routine, all data structures are resident in system until a program finishes.

5.1.2 Add/Sub/Gen Routine

A Lib object can contain one or more than one Design objects, and holds these objects as a list. This list
represents the 1:m relationship between design library and design unit. A Design object can be added to,
subtracted from, and referred to the list freely using PI routines.

typedef Design* did;

typedef 9 List<Design*> gdid;

int st = lib->add_designs(dsn);

int st = lib->sub_designs(dsn);

gdid gd = lib->gen_designs();
Lib

work

L]

G 71D

Figure 12. Add, Subtract, and refer design units.

Figure 12 shows the C++ code for handling Design object and the result of that running. The type "did" is
predefined to a pointer of Design object by PI library. And, the type "gdid" is aso predefined to a pointer of a
single linked list of Design objects. For the Lib object named "work", add routine adds the given Design object to
the list within Lib object, sub routine subtracts the given Design object from the list, and gen routine returns the

list of al Design objects contained in Lib object.

£B?=2

® Synopsisof add routine
#include "libraryMan.h"
#include "designMan.h"
int lib->add_designs(dsn)
lid lib; -- pointer of aLib object.
did dsn; -- pointer of a Design object.
Description
a. Append a Design object to the list which is a storage field of agiven Lib object.
b. Return 1 if finished successfully, otherwise return O.

cf) If there is already a Design object which has the same name, it is an erroneous condition.

® Synopsisof sub routine
#include "libraryMan.h"
#include "designMan.h"
int lib->sub_designs(dsn)
lid lib; -- pointer of aLib object.
did dsn; -- pointer of a Design object.
Description
a. Subtract a Design object from the list of a given Lib object.
b. Return 1 if finished successfully, otherwise return O.

® Synopsis of gen routine
#include "libraryMan.h"
#include "designMan.h"
gdid lib->gen_designs()
lid lib; -- pointer of aLib object.
Description
a. Collect the Design objects which is connected to a given Lib object asalist.
b. Return the pointers of Design objects as asingle linked list.

513 Get Routine

The type of attribute fields is not a pointer type but integer, string, enumeration, and so on. The attribute value of
a VDT object is determined when the object is created, and can be changed. So, there is only access routine to
refer the attribute fields. The get routine is the access routine of the attribute fields.

® Synopsis of get routine

#include "libraryMan.h"

£Bs

string lib->get_name()
lid lib; -- pointer of aLib object.
Description

a. Return the logical library name corresponding to agiven Lib object.

cf) The aboveitalic string "name" can be replaced to other strings in order to get the other attribute field.

5.1.4 Search Routine

As a design library is distinguished by a different logical hame, a design unit is distinguished by a different

design unit name. There are two methods to find a design unit contained in a design library. One is the

sequential search of all Design objects, which can be obtained using gen routines. The other is by using the

search routine which is defined as a member function of Lib object. Lib object internally has a symbol table for

design units. The symbol table uses the name of design unit as a key. So, an easy and fast search can be

accomplished only with the name of a design unit.

lid lib = gl.open(“work”);
did dsn = lib->search(“alu”, “behav”);

Lib work

%@ don
| Design | | Design | Design
alu behav

Figure 13. Search adesign unit.

Figure 13 shows the C++ code of search routine and the result. The Lib object "work" can first be obtained using

open routine. To search for a design unit, two names are needed as parameters of search routine. The first name

"au" is a primary unit name, the second name "behav" is a secondary unit name. Namely, the searching design

unit may be a architecture body named "behav" corresponding to an entity named "au". If aprimary unit wish to

be obtained, the second name should not be given. In a design library, only one design unit can exist with the

same name. So, the search routine returns just one Design object.

® Synopsis of search routine
#include "libraryMan.h"
#include "designMan.h"
did lib->search(strl], str2])
lid lib; -- pointer of aLib object.
char* strl; -- identifier of primary unit.

char* str2; -- identifier of secondary unit.

LB~

Description

a. Make a symbol corresponding to given design unit names.

b. Find a symbol by searching the symbol table contained in a given Lib object.

¢. Return the pointer of the found Design object. Return Null pointer if not found.

cf) To search for a design unit in a given design library. The corresponding Lib object should first be opened. If

not opened, it will return Null pointer because the Lib object does not yet have alist of Design objects.

5.1.5 Dump Routine

VDT data model defines the Lib object and its data structure. The storage fields of the data structure can be
classified into attribute fields and relationship fields as other VDT objects. The dump routine prints the contents
of the data structure of a given object. This routine may help in the development of VDT applications by
providing an easy and fast debugging mechanism.

intst = lib->dump();

Design Library ...
name . work
path : JLIB

designs : (ALU_STATGE) (ALU_STAGE__BEHAVIOR)
(ALU_STAGE__STRUCTURE) (TRAFFIC)(TLC) (TLC_SPEC)

Figure 14. Text output of the contents of Lib object.

Figure 14 shows the C++ code of dump routine and the result for a Lib object. The attribute field "name"
describes the logical library name "work". The attribute field "path" describes the directory path-name "./LIB"
corresponding to the design library. The field "designs' represents the 1:m relationship to design units, and
describes the list of Design objects linked to the Lib object. In the textual output, the symbols of Design objects
are printed instead of Design objects itself. The symbol of a Design object is made by using the name of
corresponding design unit. Namely, the symbol of a secondary unit is made by "the associated primary unit
name' +" " + "the secondary unit name". The symbol of a primary unit is just its name. For instance, "TLC"
may be an entity declaration. "TLC__SPEC" may be an architecture body named "SPEC", whose associated
entity declarationiscaled "TLC".

® Synopsis of dump routine

#include "libraryMan.h"

int lib->dump()

lid lib; -- pointer of aLib object.
Description

a. Print the contents of a given Lib object in textual form.

£EByu

b. Return 1 if thereis no error, otherwise return O.

£BY

52 Design Unit M anagement
This module has few access routines and processing routines. As access routines, there are "load/save" routines,

"create” routine, and "get" routine. As processing routines, there are "dump" routine and "check" routine.

A design unit is composed of alibrary unit and a context clause. A design unit certainly has an associated library
unit. There are five kinds of VHDL construct called library unit. A library unit is either a primary unit or a
secondary unit. VHDL constructs called primary unit include entity declaration, package declaration, and
configuration declaration. Other constructs, architecture body and package body are called the secondary unit. A

secondary unit is a separately analyzed body of a primary unit resulting from a previous analysis.

The design entity is the primary hardware abstraction in VHDL. It represents an individual hardware design that

has well-defined inputs and outputs and performs a well-defined function.

A complete design is composed of one or more design entities, and is represented by a design hierarchy. A
design entity may be described in terms of interconnected components. Each component of a design hierarchy
may be bound to a lower level design entity. The bindings necessary to identify a design hierarchy can be

specified in a configuration of the top level entity in the hierarchy.

A design hierarchy can be defined by a design entity or by configuration. A design entity is defined by an entity
declaration together with a corresponding architecture body. There are associations between a primary unit and a

corresponding secondary unit.

The name of a primary unit is given by the first identifier after the initial reserved word of that unit. As for the
secondary units, only the architecture body is named. Each primary unit in a given design library must have a
simple name that is unique within the given design library. Also, each secondary unit associated with a given
primary unit must have a unique name, by which the name is assembled with the name of secondary unit and the

name of associated primary unit.

£EB -

pname sname name

entity entity architecture pname
identifier identifier
arch_body entity architecture pname + sname
- identifier identifier
package package pname
identifier
pack_body package package pname + sname

identifier identifier

configuration configuration entity pname
identifier identifier

Figure 15. Naming of a design unit.

Figure 15 shows the naming rule of a design unit. The data structure of Design object has many attribute fields
such as, "object_type", "pname”, "sname", "name", and so on. These storage fields is for the identification of a
design unit. The field "pname" stores the primary unit name. The field "sname" stores a secondary unit name. A
design unit, which the associated library unit is a primary unit, has only "pname". If the associated library unit is
a secondary unit, the design unit has "sname" and "pname", where the "pname" is the identifier of the associated

primary unit.

The field "name" records a unique name for a design unit within a design library. The name is made by an
assembly of primary unit name and secondary unit name. For instance, of a design unit associated with an
architecture body, the name is an assembled string of "pname" and "sname" with separator "--", where "sname"

isthe identifier of the architecture body, and "pname" is the identifier of the associated entity declaration.

The design unit whose associated library unit is a primary unit does not have "sname". But the field "sname" is
used for special purpose, a design unit associated with entity declaration uses the "sname" to record the identifier
of an architecture body. This recording indicates the most recently analyzed architecture body associated to the
entity declaration. This pair becomes a default design entity. Also, a design unit associated with configuration

declaration uses the "sname" to record the identifier of associated entity declaration.

521 Load/Save Routine

Design object can be regarded as a container of Basic objects. A stored intermediate form is composed of one
Design object and many Basic objects. The behavior of circuits are represented wholly by Basic objects and links
among these objects which is called Basic cloud. The Basic cloud is a directed graph which contains only one
Basic object corresponding to library units. This object is a top vertex of the graph, and Design object points to

the top object using storage field "top".

£ B

did dsm = dsn->load();

did dsm = dsn->save(); 1 type |
i
«
: LeT T T - ,/external
Design | . _ R - s s reference
~_ -7 \,l‘\\
tOp,""\ === | r=--*- N
. - A
; ventity T mew T ITTSe
| il 1) signa it
\ | \ T oo 1 I(
1 - _-_— - A}
K o Moo “
LN * ||I' 1 '
o~ a! type 1]
L a_ 2 __.
l el S/
A '-:_: statement | i
h 4

Figure 16. Load and save a design unit.

Figure 16 shows the C++ code of load/save routines and the results. A created or opened Design object just
contains no Basic objects, and the field "top" has Null pointer. If there is the intermediate form file
corresponding to a design unit, the "load" routine reads the file, constructs an intermediate form, and records the
field "top" to the pointer of a top object. The "save" routine stores a given Design object and the related Basic
cloud to a intermediate form file. The contents of Design object are located at the header part of afile, and the
contents of Basic cloud is appended to the file. The "open™ routine for a design unit just reads the header part of
the corresponding intermediate form file, and creates a Design object with that contents. In the future, the "load"

routine will read the remainder of thefile.

An intermediate form corresponding to a given design unit may have any externa reference like that from
O _signal to O_type, where the O _type is not contained in the given design unit. The "save" routine breaks the

external link during storing of afile, and the "load" routine restores the external links during reading.

® Synopsisof load routine
#include "designMan.h"
did dsn->load()
did dsn; -- pointer of a Design object.
Description
a. Get a path-name of the intermediate form file from a given Design object.
b. Check that the file is not corrupted by reading the contents of the header part.
¢. Reconstruct an intermediate form at the same time as when reading the remainder part of the file.
d. Return the pointer of a given Design object if there is no error, otherwise return Null pointer.
cf) During the reading of a given intermediate form file, there is any link to a Basic object which is contained in
other Design object. The related design unit will be loaded automatically.

£g2

® Synopsisof save routine
#include "designMan.h"
did dsn->save()
did dsn; -- pointer of a Design object.
Description
a. Get a path-name for the intermediate form file from a given Design object.
b. First save the contents of Design object in the header part of thefile.
c. Save the contents of Basic cloud in the remainder part of the file.

d. Return the pointer of a given Design object if there is no error, otherwise return Null pointer.

522 Create Routine

Design object is a container of Basic objects. The data structure of Design object has a storage field for Basic
object list. The "create" routine creates a Basic object, and appends to the list of a given Design object. Each
created Basic object is numbered sequentially, where the sequence number is unique within in a Design object.

Actualy, the Basic object list isimplemented on to alinear table which is automatically and discretely extended.

typedef Basic* oid;
oid obj = dsn->create _type(In, “bit”, T_enum);

Design

b

17> context e

1

library

entity

I/r signal I

Figure 17. Create a Basic object.

Figure 17 shows the C++ code of "create" routine and the result. The type "oid" is predefined to a pointer of
Basic object by PI library. The "create type" routine creates a Type object within a Design object pointed by
variable "dsn". Type object has many attribute fields which must be filled during creation. As parameters in the
above code, line number "5", type name "bit", and type kind "T_enum" are given. Newly created Type object is

appended to the last index of the linear table.

® Synopsis of create routine

#include "designMan.h"

£E°®°

#include "basicMan.h"
oid dsn->create type(In,str,tk)
did dsn; -- pointer of a Design object.
int In; -- line number within VHDL file.
char* str; -- identifier of type declaration.
type_kind tk; -- kind of type declaration.
Description
a. Create a Type object attributed by the given parameters.
b. Append the object to the Basic object list within a given Design object.
¢. Return pointer of Type object if there is no error, otherwise return Null pointer.
cf) The above italic string "type" can be replaced into other strings to create other kinds of Basic object. All

attribute fields of a created object must be given as parameters.

523 Get Routine

The type of attribute fields is not a pointer type but integer, string, enumeration, and so on. The attribute value of
a VDT object is determined when the object is created, and can be changed. So, there is only access routine to
refer the attribute fields. The get routine is the access routine of the attribute fields.

® Synopsis of get routine
#include "designMan.h"
string dsn->get_pname()
did dsn; -- pointer of a Design object.
Description
a. Return the primary unit name corresponding to a given Design object.

cf) The above italic string "pname" can be replaced to other string for getting other attribute field.

5.24 Dump Routine

As other VDT objects, the data structure of Design object also has many attribute fields and a few relationship
fields. The "dump" routine prints the contents of a given Design object in textual form. It will help to debug
during the development of VDT applications.

£E+

int st = dsn->dunmp();

Desi gn unit
type coentity
pnane . ALU_STAGE
snarme : STRUCTURE
pat h : ./ LI B ALU_STAGE. i f
spath :
count ;171
top ;160

Figure 18. Textual output of the contents of a given
Design object.

Figure 18 shows the C++ code of "dump" routine and the result. The attribute fields do not record the pointer
value but integer or string value. The relationship fields record the pointers of related objects, where the related
objects are only Basic objects. Instead of printing the pointer value of related object, the sequence number of that
object is printed. This routine prints the contents of a Design unit pointed by variable "dsn", and return either

succeess or fail.

® Synopsis of dump routine
#include "designMan.h"
int dsn->dump()
did dsn; -- pointer of a Design object.
Description
a. Print the contents of a given Design object in textual form.

b. Return 1 if no occur, otherwise return O.

525 Generate Routine
A design unit is composed of a context clause and a library unit. The "generate” routine for a Design object
makes VHDL code corresponding to each Basic object contained in this object. If the given object does not have

enough information, the generated VHDL code may contain illegal syntax and semantics.

® Synopsis of generate routine
#include "designMan.h"
void dsn->generate()
did dsn; -- pointer of Design object.
Description
a. Generate the VHDL code from a given Design object "dsn".

b. Print the textual code to the screen by default.

£E?Z2

526 Check Routine

The access routines located in primitive layer of Pl library can be classified into two categories: attribute getting
routines and relationship making routines. The relationship making routines check if the relationship for the
given objects is legal to make. But only a few illegal syntax and semantics can be detected by relationship

making routines.

All lexical and syntactic errors are detected by analyzer during parsing of VHDL code and constructing of an
intermediate form. And, all semantic errors are detected by this "check" routine. The "check" routine is located
in application layer of Pl library, and does the semantic checking for each Basic object contained within the

given Design object.

® Synopsis of check routine
int dsn->check()
did dsn; -- pointer of a Design object.
Description
a. Get Basic objects contained within the given Design object.
b. Check semantics for each Basic object.
c. Print error message for each semantic error.

d. Return 1 if thereis no error, otherwise return O.

£ES

53 Library Unit Management
This module has numerous access routines and processing routines. As access routines, there are "set/get"
routine, "add/sub/gen” routine, and "get" routine. As processing routines, there are "search”, "dump”, "generate”,

and "check" routine.

All VHDL constructs, except for design unit and design library, are represented by Basic objects in an
intermediate form. Basic object is classified into many kinds, and identified by the value of storage field "object

type". And some kind of objects are more classified by many kinds. "operator kind", "literal kind", and so on.

A declarative region is a portion of the text of the VHDL description. A declarative region is formed by the text
of each of the several VHDL constructs, such as entity declaration, process statement, block configuration, and

so on. The declarative region is said to be associated with the corresponding declaration or statement.

A declarative region is represented by the symbol table, which is located within a Basic object associated with the
declaration region. The symbol table of a Basic object enrolls All VHDL constructs having hames and appearing
within the corresponding VHDL construct. There is hierarchy among declarative regions. For instance, a
declarative region associated with entity declaration is larger than the region associated with process statement.

Likewise, thereis hierarchy among Basic objects having symbol table.

The scope of a declaration is a portion of the text in which the declaration may be visible. A named entity can be
visible only within its own scope. A declaration appears with a declaration region associated with a certain
VHDL construct. Namely, the scope of a nhamed entity may be the declarative region appearing the declaration.
The Basic object corresponding to a named entity is enrolled in to the symbol table, in which the declaration of

the named entity appears within the declarative region corresponding to the symbol table.
53.1 Set/Get Routine

The storage fields for representing 1:1 relationship can record only one pointer of Basic object. The records of
these fields can be modified by "set" routine, and can be referred by "get” routine.

£tE~

oid os = dsn->create_signal(5, “clk”, M_in, S_null);
int st=os->set_type(ot);
oid ot = os->get_type();

ot
7
Y
Signad ;’
line=5 _-7| Type
name = “clk” B name = bit
mode=in _|--~ WPe
kind = null

Figure 19. Set and refer a Basic object.

Figure 19 shows the C++ code of "set/get" routine and the results. The "create signal" routine creates a Signal
object named "clk", and returns the pointer "o0s"' of the created object. For the object "os', the "set_type" routine
makes a 1:1 relationship with a given Type object "ot". The "get_type" routine returns the Type object related to
"0s' object.

® Synopsis of set routine
#include "basicMan.h"
int obj->set_type(obt)
oid obj; -- pointer of Basic object.
oid obt; -- pointer of Basic object.
Description
a. Link the given object "obt" to the storage field "type" of "obj" object.
b. Print error message if "obj" object does not have the "type" relationship.
c. Print error message if the given "obt" object isillegal as Type object.
c. Return 1 if thereis no error, otherwise return 0.

cf) The aboveitalic string "type" can be replaced into other relationship names to make a 1:1 relationship.

® Synopsis of get routine
#include "basicMan.h"
oid obj->get_type()
oid obj; -- pointer of Basic object.
Description
a. Get the object linked to the storage field "type" of a given object "obj".
b. Report error if the object "obj" does not have a relationship named "type".
¢. Return the linked object if there is no error, otherwise return Null pointer.

cf) The aboveitalic string "type" can be replaced into other relationship names to get the 1:1 relationship field.

£Ep

5.3.2 Add/Sub/Gen Routine
The storage fields for representing 1:m relationship can link one more Basic object. The records of these fields

can be modified by "add/sub" routine, and can be referred by "gen” routine.

int st = obj->add_signals(os);
int st = obj->sub_signals(0s);
gid gob = obj->gen_signals();

| l

50 [Swa]

Figure 20. Append, detach, and refer Basic objects.

Figure 20 shows the C++ code of "add/sub/gen” routine and the results. The "add signals’ routine appends the
given Signal object "os' to the list of Entity object "obj". The "sub_signals' routine detaches the given Signal
object "os"' from thislist. The "gen_signals' routine returns the copy "gob™ of thislist.

® Synopsisof add routine
#include "basicMan.h"
int obj->add_signals(obs)
oid obj; -- pointer of Basic object.
oid obs; -- pointer of Basic object.
Description
a. Append the given object "obs" to the signal list of object "obj".
b. Report error if the object "obj" does not have a 1:m relationship for signal list.
c. Report error if the given object "obs' cannot be regarded as Signal object.
d. Return 1 if thereis no error, otherwise return O;

cf) The aboveitalic string "signals' can be replaced into other relationship names to make the 1:m relationship.

® Synopsis of sub routine
#include "basicMan.h"
int obj->sub_types(obt)
oid obj; -- pointer of Basic object.
oid obt; -- pointer of Basic object.
Description
a. Detach the given object "obt" from the type list of object "obj".

£EY

b. Report error if the object "obj" does not have a 1:m relationship for type list.
c. Return 1 if thereis no error, otherwise return 0.

cf) The aboveitalic string "types' can be replaced into other relationship names to remove the 1:m relationship.

® Synopsis of gen routine
#include "basicMan.h"
gid obj->gen_signals()
oid obj; -- pointer of Basic object.
Description
a. Copy thissignal list of object "obj".
b. Report error if the object "obj" does not have a 1:m relationship for signal list.
c. Return the signal list if there is no error, otherwise return empty list.

cf) The aboveitalic string "signals' can be replaced into other relationship names to refer the 1:m relationship.

5.3.3 Getroutine
The storage fields for representing attribute can record one value which should be of a certain type. The records
of these fields can be accomplished during the creation time of Basic object. Afterward, these records cannot be

modified and can only be referred by "get" routine.

® Synopsis of get routine
#include "basicMan.h"
char* obj->get_name()
oid obj; -- pointer of Basic object.
Description
a. Get the string value of attribute field "name”.
b. Report error if the object "obj" does not have a attribute field named "name".
c. Return the value if there is no error, otherwise return Null string.
cf) The above italic string "name" can be replaced into other attribute names to get the attribute field. The type of
returned value is related to the attribute field.

5.3.4 Search Routine

The "search” routine can easily find a named object by searching the symbol table of a given object. This routine

may search globally with option "Globa" by traversing the hierarchy and searching each symbol table.

£E -

typedef S List<oid*> gid;
oid obj = dsn->get_top();
gid gob = obj->search(“bit”, Globd);

top \

\
————
constant
|
|
type
FLT
statement
b
e .__gob

Figure 21. Search a named object.

Figure 21 shows the C++ code of "search” routine and the result. The "search" routine searches globally an
object named "bit" with option "Global" by traversing the scope hierarchy. The traversing may be over to other
design unit. This routine collects al objects named "bit" and return the object list in order, in which the object

appearing in lowest region of scope hierarchy isfirst in the list.

® Synopsis of search routine
#include "basicMan.h"
gid obj->search(str, opt)
char* gtr; -- name of Basic object.
int opt; -- option of searching.
Description
a. Search a given named object contained within a Basic object "obj".
b. Traverse to the upper region of object "obj" if with global option.
c. Make thelist of found objects by searched order.
d. Return thelist if thereis no error, otherwise return empty list.
cf) This routine is defined only for the objects corresponding to VHDL constructs that have a declarative part. In

other words, this routine can be invoked for a given object that is included in Region group.

5.3.5 Dump Routine
The data structure of each Basic object has many attribute fields and many relationship fields. The "dump”
routine prints the contents of a given Basic object in textual form. It will help in the development of VDT

applications.

£E

int st = obj->dump();

Attribute

object_type : entity

id_number :160

line_number : 1

flag 10

name : ALU_STAGE

symbols : (163,S1) (162,S2) (166,B1) (161,S3)

(168,M)(167,C1) (164,50) (165,A1) (169,C2) (170,F1)
Relationship

scope :

context : 0

generics

ports : 161 162 163 164 165 166 167 168 169 170

subprograms :

types

constants

signas

files

aliases

attributes

attr_specs

disc_specs :

uses

Figure 22. Textua output of the contents of Entity object.

Figure 22 shows the C++ code of "dump" routine and the result. The "dump” routine prints the contents of a
given Basic object, Entity object in this figure. Entity object has a symbol table because the corresponding entity

declaration is associated with a declaration region.

® Synopsis of dump routine
#include "basicMan.h"
void obj->dump()
oid obj; -- pointer of Basic object.
Description
a. Print the contents of a given Basic object in textual form.

b. Return 1 if thereis no error, otherwise return O.

5.3.6 Generate Routine
All kinds of Basic objects each have a corresponding VHDL construct. The "generate” routine for a Basic object
makes the corresponding VHDL code from the information contained in the object. If the given object does not

have enough information, the generated VHDL code may contain illegal syntax and semantics.
® Synopsis of generate routine

#include "basicMan.h"

void obj->generate()

£E?

oid obj; -- pointer of Basic object.
Description
a. Generate the VHDL code from a given Basic object "obj".
b. Print the textual code on the screen by defaullt.

5.3.7 Check Routine
All kinds of Basic objects each have a corresponding VHDL construct. The “check" routine for a Basic object

checks the all semantics of corresponding VHDL construct.

® Synopsis of check routine
#include "basicMan.h"
void obj->check()
oid obj; -- pointer of a Basic object.
Description
a. Check the semantics for a given Basic object "obj".
b. Print proper message immediately when error is detected.

c. Return no vaue.

5.3.8 Characterize Routine

Basic objects are classified into many kinds according to various properties of VHDL constructs. For instance, a
named entity -- such as, signal, type, variable, and so on. -- can be referred by other portion of VHDL construct.
These Basic objects can be grouped and called named object. Another example, a typed entity -- such as signal,
variable, subprogram, and so on. -- has a relationship to Type object. These objects can be grouped and called
typed object. The typed object can only appear in an expression.

There are numerous routines that get the properties from a given Basic object. The VDT user may get the
properties by digging all the attribute fields and relationship fields for a given object. But it is easy to use these

routines to get various properties.

® Synopsis of characterize routine
#include "basicMan.h"
int obj->hasScope()
int obj->isSequStmt()
#include "glossary.h"
int isStaticExpr(obj)
oid getExpr Type(obj)
oid obj; -- pointer of Basic object.

£EE"°

Description

a The"has' routine returnsif a given Basic object has "scope” field.

b. The"is" routine returnsif a given object belongs to sequential statement group.
c. The third "is" routine returns if a given object belongs to static expression group.
d. The "get" routine returns the Type object related to a given expression.

cf) The above italic strings can be replaced into other strings to get other properties.

£E+

6 Characterize Routines

Lib object and Design object cannot be divided any further. But Basic object is classified into many kinds. Each
object corresponds to a unique VHDL construct, and also has the properties which the corresponding construct
has. For instance, an object has a name, an enclosing region, a specified type, and so on. In a detail, an object
belongs to the group of expression, sequential statement, scalar type, and so on. Basic object can be classified not

only by object kinds, but also by these properties.

All kinds of Basic objects are implemented to classes derived from a same base class named "Basic’. These
objects are viewed to user just as the same object. In many cases, the user wants to know the kind of a given
Basic object and the properties of that object. The user can find these information by digging the storage fields of
agiven object. But it is easy to use the "characterize" routines that find any properties from a given object. These
"characterize" routines are classified into three kinds: class identifying routines, group identifying routines, and

property getting routines.

Class identifying routines identify that a given object belongs to a specified class. There are many intermediate
classes defined just for code sharing. These routines are accomplished just by checking the class hierarchy.
Group identifying routines identify that a given object belongs to a specified group. Basic objects having the
same properties are grouped together, and are said to belong to any group. This can be accomplished by digging
only attribute fields of a given object. Property getting routines get any specified properties from a given object
by digging into the relationship fields of that object.

All attribute fields of VDT object are determined at the time of creation, and cannot be changed afterwards. So
first and second routines always guarantee a correct result and errorless completion. These routines are used for

the relationship checking that is accomplished within relationship making routines.

On the other hand, the relationship fields are changed freely by using the relationship making routines. This
meas that property getting routines cannot guarantee correct results. For instance, if a given object does not have

enough information represented by relationships, then these routines cannot obtain any properties.

6.1 Classidentifying routines
The inheritance mechanism of object-oriented technique enables the code sharing. The common storage fields
and member functions can be defined as an individual class. All classes derived from a class inherit al storage

fields and member functions of that class.

In addition, the inheritance mechanism enables the grouping of objects that have some common properties. All

objects corresponding to classes derived from a class are said to belong to that class.

£E2

For a given object, it usualy needs to know if the corresponding class inherit a specified class, in other words,
belongs to a specified class. Through the following "has" routine, a given object has some specified storage fields

and member functions, in other words, belongs to a specified class.

® Synopsis of "has' routines.
int obj->hasClassName();
oid obj; -- pointer of aBasic object.
Description
a. These routines return 1 if a given object belongs to the specified class, otherwise return 0.

cf) Theitalic string can be replaced into other class names to identify other classes.

Basic
O_comment
O_literal
@ O_operator
ST loop O_conf_spec
ST generate @ O_attr_spec
ST if O_disc_spec
ST_if_alt
ST_case
_ O_block_conf
ST_case dt @ @ O_comp_conf
O_subprogram
O_context O_component
O_block_conf O_type
O_constant
O_signd
. O _variable
8_ent|r:yb . O file
_arch_body O _dlias
O_package SP_func_body O_attribute
O_pack_body SP_proc_body i
. / ST block O_library
O_configuration _oloc! O_statement
ST_process

Figure 23. Class hierarchy of Basic objects.

Figure 23 shows the class hierarchy of Basic object. All classes are derived from the same class nhamed "Basic".
All terminal classes corresponds to some kind of Basic objects. The intermediate classes are defined for code
sharing. Namely, these classes have common storage fields and member functions that are shared by multiple

classes. The following list are all intermediate classes defined by the above class hierarchy.

® Context

This class contains a relationship field named "context” and several member functions. This field makes the

£Es

relationship to an object that corresponds to context clause. All classes corresponding to library units inherit this

class.

® Symbols
This class contains a relationship field named "symbols' and several member functions. This field makes a
relationship to object list that corresponds to named entities. All classes corresponding to VHDL constructs that

contain a declarative part inherit this class.

® Uses
This class contains a relationship field named "uses' and several member functions. This field makes a
relationship to object list that corresponds to use clauses. All classes corresponding to VHDL constructs that may

contain one or more use clauses inherit this class.

® Comments
This class contains a relationship field named "comments' and severa member functions. This field makes a
relationship to object list that corresponds to comments. All classes corresponding to VHDL constructs that may

contain one or more comments inherits this class.

® Scope
This class contains a relationship field named "scope" and several member functions. This field makes a
relationship to an object that corresponds to enclosing region. All classes corresponding to VHDL constructs that

have an enclosing region inherit this class.

® Name
This class contains a attribute field named "name" and member functions. This field records the name of an

object. All classes corresponding to VHDL constructs that may have a name inherit this class.

® Type

This class contains a relationship field named "type" and several member functions. This field makes a
relationship to an object that corresponds to a type declaration. All classes corresponding to VHDL constructs
that have a specified type inherit this class.

6.2 Group identifying routines

Basic objects having the same properties are grouped together, and are said to belong to the same group. For
instance, the constraint in VHDL takes a role of constraining the range of the specified type. The constraints are
described by several objects according to the text of constraint. These objects are grouped and are said to belong

to a Constraint group.

£EE~

As another example, an expression in VHDL is composed of operators and operands. Each operator and operand
has a value and atype. The objects corresponding to operators or operands are grouped and are called Expression
object. As the objects corresponding to operands of an operator, the objects included in Expression group are

only alowed.

It usually needsto know if a given object belongs to any specified group. The following "is" routine provides this

function.

® Synopsisof "is' routines
int obj->isGroupName();
oid obj; -- pointer of Basic object.
Description
a Theseroutines return 1 if a given object belongs to the specified group, otherwise return O.

cf) Theitalic string can be replaced into other group names to identify other groups.

In special, the following routines are defined to identify that a given object is the object having specified kind.
These routines are defined as virtual functions with a different argument.

virtual int isRight(const object_type) const;

virtual intisRight(const literal_kind) const;

virtual int isRight(const operator_kind) const;

virtua intisRight(const stmt_kind) const;

virtual int isRight(const subprog_kind) const;

virtua int isRight(const type kind) const;

Figure 24 shows the groups that are classified Basic objects according to attribute fields only. All defined groups

are listed as follows.

£EEyq

O_constant
O _signd
O_variable
0O_file
O _dias
OP o O _literal
- T _dement
OP_downto OP range | - T unit
e e S ~ —
Ve ~
. >
z 4 OP_attribute
Auser Aleft -7 Apred A ascending \A_range T A_last_value
A_base, A right ’ A_leftof A _length A _reverse ranger A_driving
A_image A_high A_rightof A_delayed A_event | A_driving_value
A_value \‘A_I ow A_left_ A stable A_active v A_simple_name
A_pos ,\A_ di A_right_ A_quite A_last_event A_instance_name
A_va OSCENCING A high_ A_transaction A_last_active A_path_name
A_succ \ A_low_ -

AY
\

X
O_subprogram
’\ O_component
O_comp_conf
O_type ' O_use
T_record ST_generate

ST _loop

Figure 24. Classifying Basic objects by multiple groups.

® Choice
This group includes the objects corresponding to choice in VHDL. A choice constraint can be a simple

expression or a discrete range.

® Constraint
This group includes the objects corresponding to constraint in VHDL. A constraint can be a range constraint or

an index constraint.

® RangeConstraint
This group includes the objects corresponding to range constraint in VHDL. An index constraint can be a

To/Downto range or an range attribute. The range attributes imply attribute names that result in a range.
® [ndexConstraint

This group includes the objects corresponding to index constraint in VHDL. An index constraint is represented

by OP_range which describes a discrete range.

£ELY

® Expression
This group includes the objects corresponding to an expression in VHDL. An expression is composed of
operators, operands, and names. The names denote objects, values, and attributes. The only attribute names

allowed as expression are ones that result in avalue.

® Type
This group includes the objects corresponding to a type in VHDL. All objects included in an expression group

have avalue and atype. The typesimply the declarations, or attribute names that result in atype.

® Region
This group includes the objects corresponding to VHDL constructs that have a declarative part. Only these

objects have the "search” member function.

Figure 25, 26 show the groups that are classified as Operator, Statement, Subprogram, and Type objects
according to attribute fields only. All defined groups are listed as follows.

Operator Expression
- . \ \\
/

AN

OP_range

Rel ational Operator A OP to ’

OP_downto
AddingOperator
SignOperator OP__seI ected
, N OP_indexed
MultiplyingOperator ‘\ 8lz_§tlt$iebme
- ;i

/
/

OP_add
OP_sub
OP_concat

OP_aggregate
OP_func_call
OP_qualifed

— OP_type_conv
OP_pl us — OP_allocator
OP_minus OP physical

Figure 25. Classifying Operator objects by multiple groups.

£E -

Statement

Gy | N\
; STwait

1
]
\
)/ \ ST_assert
/ \ ST_proc_call
AN
1
7

\ ST_var_assign
\ ST_next
“ ST_exit
\ ST_return
1

ST_block
ST_process
ST_sel_sig_assign
ST_sel_wave
ST_cond_sig_assign
ST_cond_wave

ST_null

Stet] (st

ST_conc_assert
ST_conc_proc_call
ST_comp_inst

7
’ T_incomplete
P .
SP_procedure SP_function T_integer T_subtype

T float T_access

4 T physical T_file
SP_proc_body SP_func_body

Figure 26. Classifying Statement, Subprogram, and Type objects by multiple
groups.

® Arithmetical Operator

This group includes the objects corresponding to operators in VHDL. The operators are classified according to
the precedence level of seven groups. LogicalOperator, RelationalOperator, ShiftOperator, AddingOperator,
SignOperator, MultiplyingOperator, MiscellaneousOperator. According to existence of |eft operand, the operator
are classified by two groups: UnaryOperator, BinaryOperator.

® Operand

This group includes the objects corresponding to operands in VHDL. The operand is classified into aggregates,
function calls, qualified expression, type conversion, alocators, and physical literal.

® NameOperator

This group includes the object corresponding to name in VHDL. The name is classified into selected name,
indexed name, slice name, and attribute name.

® Association

This group includes the objects corresponding to association constructs in VHDL. A OP_arrow describes an

association of a generic, a port, or a parameter. A OP_choice describes an element association that appearsin an

£E

aggregate construct.

® SequStmt
This group includes the object corresponding to sequential statements. Sequential statements are used to define

algorithms for the execution of a subprogram or process. They execute in the order in which they appear.

® ConcStmt
This group includes the objects corresponding to concurrent statements. Concurrent statements are used to define
interconnected blocks and processes that jointly describe the overall behavior or structure of a design. They

execute asynchronously with respect to each other.

® Function

This group includes the objects corresponding to function. These objects are SP_function, ST_func_body.

® Procedure

This group includes the objects corresponding to procedure. These objects are SP_procedure, SP_proc_body.

® ScalaType
This group includes the objects corresponding to scalar typesin VHDL. Scalar types consist of enumeration types,
integer types, physical types, and floating point types.

® NumericType
This group includes the objects corresponding to numeric typesin VHDL. Numeric types consist of integer types,
floating point types, and physical types.

6.3 Property getting routines

Each object corresponds to a unique VHDL construct, and also has the properties which the corresponding
construct has. For instance, an object has a name, an enclosing region, a specified type, and so on. As another
instance, an object belongs to the group of expression, sequential statement, scalar type, and so on. Basic object

cannot be classified not only by object kinds, but also by these properties.

All kinds of Basic objects are implemented to classes derived from a same base class named "Basic". These
objects are viewed to user just as the same object. In many cases, the user wants to know the kind of a given
Basic object and the properties for that object. The user can find these information by digging into the storage
fields of a given object. But it is easy to use the "characterize" routines that find any properties from a given
object.

£tE1

® Synopsisof "is' and "get" routines
int isProperty(obyj);
oid getProperty(obyj);
oid obj; -- pointer of Basic object
Description
a The"is' routines return 1 if the answer is yes, otherwise return 0.
a. The "get" routines return an object corresponding to the result if it is successful, otherwise return Null pointer.

cf) The above italic string can be replaced into other strings to get other properties.

® E